Mobile App Classification Method Using Machine Learning Based User Emotion Recognition

Author(s):  
Taewon Kwak ◽  
Moonhyun Kim
Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5135
Author(s):  
Ngoc-Dau Mai ◽  
Boon-Giin Lee ◽  
Wan-Young Chung

In this research, we develop an affective computing method based on machine learning for emotion recognition using a wireless protocol and a wearable electroencephalography (EEG) custom-designed device. The system collects EEG signals using an eight-electrode placement on the scalp; two of these electrodes were placed in the frontal lobe, and the other six electrodes were placed in the temporal lobe. We performed experiments on eight subjects while they watched emotive videos. Six entropy measures were employed for extracting suitable features from the EEG signals. Next, we evaluated our proposed models using three popular classifiers: a support vector machine (SVM), multi-layer perceptron (MLP), and one-dimensional convolutional neural network (1D-CNN) for emotion classification; both subject-dependent and subject-independent strategies were used. Our experiment results showed that the highest average accuracies achieved in the subject-dependent and subject-independent cases were 85.81% and 78.52%, respectively; these accuracies were achieved using a combination of the sample entropy measure and 1D-CNN. Moreover, our study investigates the T8 position (above the right ear) in the temporal lobe as the most critical channel among the proposed measurement positions for emotion classification through electrode selection. Our results prove the feasibility and efficiency of our proposed EEG-based affective computing method for emotion recognition in real-world applications.


2021 ◽  
Vol 184 ◽  
pp. 108333
Author(s):  
Guoli Song ◽  
Xinyi Guo ◽  
Wenbo Wang ◽  
Qunyan Ren ◽  
Jun Li ◽  
...  

2021 ◽  
Author(s):  
Tatiane Vieira Alves ◽  
Kamila Rios da Hora Rodrigues ◽  
Moacir Antonelli Ponti

Author(s):  
Resham Arya ◽  
Disha Pandey ◽  
Ananya Kalia ◽  
Ben Jose Zachariah ◽  
Ishika Sandhu ◽  
...  

2017 ◽  
Author(s):  
◽  
Zeshan Peng

With the advancement of machine learning methods, audio sentiment analysis has become an active research area in recent years. For example, business organizations are interested in persuasion tactics from vocal cues and acoustic measures in speech. A typical approach is to find a set of acoustic features from audio data that can indicate or predict a customer's attitude, opinion, or emotion state. For audio signals, acoustic features have been widely used in many machine learning applications, such as music classification, language recognition, emotion recognition, and so on. For emotion recognition, previous work shows that pitch and speech rate features are important features. This thesis work focuses on determining sentiment from call center audio records, each containing a conversation between a sales representative and a customer. The sentiment of an audio record is considered positive if the conversation ended with an appointment being made, and is negative otherwise. In this project, a data processing and machine learning pipeline for this problem has been developed. It consists of three major steps: 1) an audio record is split into segments by speaker turns; 2) acoustic features are extracted from each segment; and 3) classification models are trained on the acoustic features to predict sentiment. Different set of features have been used and different machine learning methods, including classical machine learning algorithms and deep neural networks, have been implemented in the pipeline. In our deep neural network method, the feature vectors of audio segments are stacked in temporal order into a feature matrix, which is fed into deep convolution neural networks as input. Experimental results based on real data shows that acoustic features, such as Mel frequency cepstral coefficients, timbre and Chroma features, are good indicators for sentiment. Temporal information in an audio record can be captured by deep convolutional neural networks for improved prediction accuracy.


2019 ◽  
Vol 8 (4) ◽  
pp. 2187-2191

Music in an essential part of life and the emotion carried by it is key to its perception and usage. Music Emotion Recognition (MER) is the task of identifying the emotion in musical tracks and classifying them accordingly. The objective of this research paper is to check the effectiveness of popular machine learning classifiers like XGboost, Random Forest, Decision Trees, Support Vector Machine (SVM), K-Nearest-Neighbour (KNN) and Gaussian Naive Bayes on the task of MER. Using the MIREX-like dataset [17] to test these classifiers, the effects of oversampling algorithms like Synthetic Minority Oversampling Technique (SMOTE) [22] and Random Oversampling (ROS) were also verified. In all, the Gaussian Naive Bayes classifier gave the maximum accuracy of 40.33%. The other classifiers gave accuracies in between 20.44% and 38.67%. Thus, a limit on the classification accuracy has been reached using these classifiers and also using traditional musical or statistical metrics derived from the music as input features. In view of this, deep learning-based approaches using Convolutional Neural Networks (CNNs) [13] and spectrograms of the music clips for MER is a promising alternative.


Author(s):  
Jeena Augustine

Abstract: Emotions recognition from the speech is one of the foremost vital subdomains within the sphere of signal process. during this work, our system may be a two-stage approach, particularly feature extraction, and classification engine. Firstly, 2 sets of options square measure investigated that are: thirty-nine Mel-frequency Cepstral coefficients (MFCC) and sixty-five MFCC options extracted supported the work of [20]. Secondly, we've got a bent to use the Support Vector Machine (SVM) because the most classifier engine since it is the foremost common technique within the sector of speech recognition. Besides that, we've a tendency to research the importance of the recent advances in machine learning along with the deep kerne learning, further because the numerous types of auto-encoders (the basic auto-encoder and also the stacked autoencoder). an oversized set of experiments unit conducted on the SAVEE audio information. The experimental results show that the DSVM technique outperforms the standard SVM with a classification rate of sixty-nine. 84% and 68.25% victimization thirty-nine MFCC, severally. To boot, the auto encoder technique outperforms the standard SVM, yielding a classification rate of 73.01%. Keywords: Emotion recognition, MFCC, SVM, Deep Support Vector Machine, Basic auto-encoder, Stacked Auto encode


Author(s):  
Yongbiao Gao ◽  
Yu Zhang ◽  
Xin Geng

Label distribution learning (LDL) is a novel machine learning paradigm that gives a description degree of each label to an instance. However, most of training datasets only contain simple logical labels rather than label distributions due to the difficulty of obtaining the label distributions directly. We propose to use the prior knowledge to recover the label distributions. The process of recovering the label distributions from the logical labels is called label enhancement. In this paper, we formulate the label enhancement as a dynamic decision process. Thus, the label distribution is adjusted by a series of actions conducted by a reinforcement learning agent according to sequential state representations. The target state is defined by the prior knowledge. Experimental results show that the proposed approach outperforms the state-of-the-art methods in both age estimation and image emotion recognition.


Sign in / Sign up

Export Citation Format

Share Document