scholarly journals Different Machine Learning Classifiers for Music Emotion Recognition

2019 ◽  
Vol 8 (4) ◽  
pp. 2187-2191

Music in an essential part of life and the emotion carried by it is key to its perception and usage. Music Emotion Recognition (MER) is the task of identifying the emotion in musical tracks and classifying them accordingly. The objective of this research paper is to check the effectiveness of popular machine learning classifiers like XGboost, Random Forest, Decision Trees, Support Vector Machine (SVM), K-Nearest-Neighbour (KNN) and Gaussian Naive Bayes on the task of MER. Using the MIREX-like dataset [17] to test these classifiers, the effects of oversampling algorithms like Synthetic Minority Oversampling Technique (SMOTE) [22] and Random Oversampling (ROS) were also verified. In all, the Gaussian Naive Bayes classifier gave the maximum accuracy of 40.33%. The other classifiers gave accuracies in between 20.44% and 38.67%. Thus, a limit on the classification accuracy has been reached using these classifiers and also using traditional musical or statistical metrics derived from the music as input features. In view of this, deep learning-based approaches using Convolutional Neural Networks (CNNs) [13] and spectrograms of the music clips for MER is a promising alternative.

Foods ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1622
Author(s):  
Liliana Grazina ◽  
P. J. Rodrigues ◽  
Getúlio Igrejas ◽  
Maria A. Nunes ◽  
Isabel Mafra ◽  
...  

In the last decade, there has been an increasing demand for wild-captured fish, which attains higher prices compared to farmed species, thus being prone to mislabeling practices. In this work, fatty acid composition coupled to advanced chemometrics was used to discriminate wild from farmed salmon. The lipids extracted from salmon muscles of different production methods and origins (26 wild from Canada, 25 farmed from Canada, 24 farmed from Chile and 25 farmed from Norway) were analyzed by gas chromatography with flame ionization detector (GC-FID). All the tested chemometric approaches, namely principal components analysis (PCA), t-distributed stochastic neighbor embedding (t-SNE) and seven machine learning classifiers, namely k-nearest neighbors (kNN), decision tree, support vector machine (SVM), random forest, artificial neural networks (ANN), naïve Bayes and AdaBoost, allowed for differentiation between farmed and wild salmons using the 17 features obtained from chemical analysis. PCA did not allow clear distinguishing between salmon geographical origin since farmed samples from Canada and Chile overlapped. Nevertheless, using the 17 features in the models, six out of the seven tested machine learning classifiers allowed a classification accuracy of ≥99%, with ANN, naïve Bayes, random forest, SVM and kNN presenting 100% accuracy on the test dataset. The classification models were also assayed using only the best features selected by a reduction algorithm and the best input features mapped by t-SNE. The classifier kNN provided the best discrimination results because it correctly classified all samples according to production method and origin, ultimately using only the three most important features (16:0, 18:2n6c and 20:3n3 + 20:4n6). In general, the classifiers presented good generalization with the herein proposed approach being simple and presenting the advantage of requiring only common equipment existing in most labs.


2015 ◽  
Vol 50 (4) ◽  
pp. 293-296 ◽  
Author(s):  
D Chaki ◽  
A Das ◽  
MI Zaber

The classification of heart disease patients is of great importance in cardiovascular disease diagnosis. Numerous data mining techniques have been used so far by the researchers to aid health care professionals in the diagnosis of heart disease. For this task, many algorithms have been proposed in the previous few years. In this paper, we have studied different supervised machine learning techniques for classification of heart disease data and have performed a procedural comparison of these. We have used the C4.5 decision tree classifier, a naïve Bayes classifier, and a Support Vector Machine (SVM) classifier over a large set of heart disease data. The data used in this study is the Cleveland Clinic Foundation Heart Disease Data Set available at UCI Machine Learning Repository. We have found that SVM outperformed both naïve Bayes and C4.5 classifier, giving the best accuracy rate of correctly classifying highest number of instances. We have also found naïve Bayes classifier achieved a competitive performance though the assumption of normality of the data is strongly violated.Bangladesh J. Sci. Ind. Res. 50(4), 293-296, 2015


2018 ◽  
Vol 36 (4) ◽  
pp. 590-606 ◽  
Author(s):  
Shrawan Kumar Trivedi ◽  
Shubhamoy Dey

Purpose To be sustainable and competitive in the current business environment, it is useful to understand users’ sentiment towards products and services. This critical task can be achieved via natural language processing and machine learning classifiers. This paper aims to propose a novel probabilistic committee selection classifier (PCC) to analyse and classify the sentiment polarities of movie reviews. Design/methodology/approach An Indian movie review corpus is assembled for this study. Another publicly available movie review polarity corpus is also involved with regard to validating the results. The greedy stepwise search method is used to extract the features/words of the reviews. The performance of the proposed classifier is measured using different metrics, such as F-measure, false positive rate, receiver operating characteristic (ROC) curve and training time. Further, the proposed classifier is compared with other popular machine-learning classifiers, such as Bayesian, Naïve Bayes, Decision Tree (J48), Support Vector Machine and Random Forest. Findings The results of this study show that the proposed classifier is good at predicting the positive or negative polarity of movie reviews. Its performance accuracy and the value of the ROC curve of the PCC is found to be the most suitable of all other classifiers tested in this study. This classifier is also found to be efficient at identifying positive sentiments of reviews, where it gives low false positive rates for both the Indian Movie Review and Review Polarity corpora used in this study. The training time of the proposed classifier is found to be slightly higher than that of Bayesian, Naïve Bayes and J48. Research limitations/implications Only movie review sentiments written in English are considered. In addition, the proposed committee selection classifier is prepared only using the committee of probabilistic classifiers; however, other classifier committees can also be built, tested and compared with the present experiment scenario. Practical implications In this paper, a novel probabilistic approach is proposed and used for classifying movie reviews, and is found to be highly effective in comparison with other state-of-the-art classifiers. This classifier may be tested for different applications and may provide new insights for developers and researchers. Social implications The proposed PCC may be used to classify different product reviews, and hence may be beneficial to organizations to justify users’ reviews about specific products or services. By using authentic positive and negative sentiments of users, the credibility of the specific product, service or event may be enhanced. PCC may also be applied to other applications, such as spam detection, blog mining, news mining and various other data-mining applications. Originality/value The constructed PCC is novel and was tested on Indian movie review data.


Author(s):  
Revella E. A. Armya ◽  
Adnan Mohsin Abdulazeez ◽  
Amira Bibo Sallow ◽  
Diyar Qader Zeebaree

Leukemia refers to a disease that affects the white blood cells (WBC) in the bone marrow and/or blood. Blood cell disorders are often detected in advanced stages as the number of cancer cells is much higher than the number of normal blood cells. Identifying malignant cells is critical for diagnosing leukemia and determining its progression. This paper used machine learning with classifiers to detect leukemia types as a result, it can save both patients and physicians time and money. The primary objective of this paper is to determine the most effective methods for leukemia detection. The WEKA application was used to evaluate and analyze five classifiers (J48, KNN, SVM, Random Forest, and Naïve Bayes classifiers). The results were respectively as follows: 83.33%, 87.5%, 95.83%, 88.88%, and 98.61%, with the Naïve Bayes classifier achieving the highest accuracy; however, accuracy varies according to the shape and size of the sample and the algorithm used to classify the leukemia types.


With the increase in the usage of mobile technology, the rate of information is duplicated as a huge volume. Due to the volume duplication of message, the identification of spam messages leads to challenging task. The growth of mobile usage leads to instant communication only through messages. This drastically leads to hackers and unauthorized users to the spread and misuse of sending spam messages. The identification of spam messages is a research oriented problem for the mobile service providers in order to raise the number of customers and to retain them. With this overview, this paper focuses on identifying and prediction of spam and ham messages. The SMS Spam Message Detection dataset from KAGGLE machine learning Repository is used for prediction analysis. The identification of spam and ham messages is done in the following ways. Firstly, the levels of spread of target variable namely spam or ham is identified and they are depicted as a graph. Secondly, the essential tokens that are responsible for the spam and ham messages are identified and they are found by using the hashing Vectorizer and it is portrayed in the form of spam and Ham messages word cloud. Thirdly, the hash vectorized SMS Spam Message detection dataset is fitted to various classifiers like Ada Boost Classifier, Extra Tree classifier, KNN classifier, Random Forest classifier, Linear SVM classifier, Kernel SVM classifier, Logistic Regression classifier, Gaussian Naive Bayes classifier, Decision Tree classifier, Gradient Boosting classifier and Multinomial Naive Bayes classifier. The evaluation of the classifier models are done by analyzing the Performance analysis metrics like Accuracy, Recall, FScore, Precision and Recall. The implementation is done by python in Anaconda Spyder Navigator. Experimental Results shows that the Linear Support Vector Machine classifier have achieved the effective performance indicators with the precision of 0.98, recall of 0.98, FScore of 0.98 , and Accuracy of 98.71%.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
John Andoh ◽  
Louis Asiedu ◽  
Anani Lotsi ◽  
Charlotte Chapman-Wardy

Gathering public opinions on the Internet and Internet-based applications like Twitter has become popular in recent times, as it provides decision-makers with uncensored public views on products, government policies, and programs. Through natural language processing and machine learning techniques, unstructured data forms from these sources can be analyzed using traditional statistical learning. The challenge encountered in machine learning method-based sentiment classification still remains the abundant amount of data available, which makes it difficult to train the learning algorithms in feasible time. This eventually degrades the classification accuracy of the algorithms. From this assertion, the effect of training data sizes in classification tasks cannot be overemphasized. This study statistically assessed the performance of Naive Bayes, support vector machine (SVM), and random forest algorithms on sentiment text classification task. The research also investigated the optimal conditions such as varying data sizes, trees, and kernel types under which each of the respective algorithms performed best. The study collected Twitter data from Ghanaian users which contained sentiments about the Ghanaian Government. The data was preprocessed, manually labeled by the researcher, and then trained using the aforementioned algorithms. These algorithms are three of the most popular learning algorithms which have had lots of success in diverse fields. The Naive Bayes classifier was adjudged the best algorithm for the task as it outperformed the other two machine learning algorithms with an accuracy of 99%, F1 score of 86.51%, and Matthews correlation coefficient of 0.9906. The algorithm also performed well with increasing data sizes. The Naive Bayes classifier is recommended as viable for sentiment text classification, especially for text classification systems which work with Big Data.


Electronics ◽  
2021 ◽  
Vol 10 (17) ◽  
pp. 2083
Author(s):  
Sylwia Rapacz ◽  
Piotr Chołda ◽  
Marek Natkaniec

The paper elaborates on how text analysis influences classification—a key part of the spam-filtering process. The authors propose a multistage meta-algorithm for checking classifier performance. As a result, the algorithm allows for the fast selection of the best-performing classifiers as well as for the analysis of higher-dimensionality data. The last aspect is especially important when analyzing large datasets. The approach of cross-validation between different datasets for supervised learning is applied in the meta-algorithm. Three machine-learning methods allowing a user to classify e-mails as desirable (ham) or potentially harmful (spam) messages were compared in the paper to illustrate the operation of the meta-algorithm. The used methods are simple, but as the results showed, they are powerful enough. We use the following classifiers: k-nearest neighbours (k-NNs), support vector machines (SVM), and the naïve Bayes classifier (NB). The conducted research gave us the conclusion that multinomial naïve Bayes classifier can be an excellent weapon in the fight against the constantly increasing amount of spam messages. It was also confirmed that the proposed solution gives very accurate results.


2020 ◽  
Vol 1 (2) ◽  
pp. 61-66
Author(s):  
Febri Astiko ◽  
Achmad Khodar

This study aims to design a machine learning model of sentiment analysis on Indosat Ooredoo service reviews on social media twitter using the Naive Bayes algorithm as a classifier of positive and negative labels. This sentiment analysis uses machine learning to get patterns an model that can be used again to predict new data.


Author(s):  
V Umarani ◽  
A Julian ◽  
J Deepa

Sentiment analysis has gained a lot of attention from researchers in the last year because it has been widely applied to a variety of application domains such as business, government, education, sports, tourism, biomedicine, and telecommunication services. Sentiment analysis is an automated computational method for studying or evaluating sentiments, feelings, and emotions expressed as comments, feedbacks, or critiques. The sentiment analysis process can be automated using machine learning techniques, which analyses text patterns faster. The supervised machine learning technique is the most used mechanism for sentiment analysis. The proposed work discusses the flow of sentiment analysis process and investigates the common supervised machine learning techniques such as multinomial naive bayes, Bernoulli naive bayes, logistic regression, support vector machine, random forest, K-nearest neighbor, decision tree, and deep learning techniques such as Long Short-Term Memory and Convolution Neural Network. The work examines such learning methods using standard data set and the experimental results of sentiment analysis demonstrate the performance of various classifiers taken in terms of the precision, recall, F1-score, RoC-Curve, accuracy, running time and k fold cross validation and helps in appreciating the novelty of the several deep learning techniques and also giving the user an overview of choosing the right technique for their application.


2019 ◽  
Vol 16 (2) ◽  
pp. 5-16
Author(s):  
Amit Singh ◽  
Ivan Li ◽  
Otto Hannuksela ◽  
Tjonnie Li ◽  
Kyungmin Kim

Gravitational waves are theorized to be gravitationally lensed when they propagate near massive objects. Such lensing effects cause potentially detectable repeated gravitational wave patterns in ground- and space-based gravitational wave detectors. These effects are difficult to discriminate when the lens is small and the repeated patterns superpose. Traditionally, matched filtering techniques are used to identify gravitational-wave signals, but we instead aim to utilize machine learning techniques to achieve this. In this work, we implement supervised machine learning classifiers (support vector machine, random forest, multi-layer perceptron) to discriminate such lensing patterns in gravitational wave data. We train classifiers with spectrograms of both lensed and unlensed waves using both point-mass and singular isothermal sphere lens models. As the result, classifiers return F1 scores ranging from 0:852 to 0:996, with precisions from 0:917 to 0:992 and recalls ranging from 0:796 to 1:000 depending on the type of classifier and lensing model used. This supports the idea that machine learning classifiers are able to correctly determine lensed gravitational wave signals. This also suggests that in the future, machine learning classifiers may be used as a possible alternative to identify lensed gravitational wave events and to allow us to study gravitational wave sources and massive astronomical objects through further analysis. KEYWORDS: Gravitational Waves; Gravitational Lensing; Geometrical Optics; Machine Learning; Classification; Support Vector Machine; Random Tree Forest; Multi-layer Perceptron


Sign in / Sign up

Export Citation Format

Share Document