Designing a full-body customizable haptic interface using two-dimensional signal transmission

Author(s):  
Taichi Furukawa ◽  
Nobuhisa Hanamitsu ◽  
Yoichi Kamiyama ◽  
Hideaki Nii ◽  
Charalampos Krekoukiotis ◽  
...  
Author(s):  
Taichi Furukawa ◽  
Nobuhisa Hanamitsu ◽  
Yoichi Kamiyama ◽  
Hideaki Nii ◽  
Charalampos Krekoukiotis ◽  
...  

Author(s):  
M-G Her ◽  
M Karkoub ◽  
K-S Hsu

A model for a ‘master-slave’ two-dimensional telerobotic dynamic system with a haptic interface device is derived. The telerobotic system consists of a ‘master’ robot, which is a direct-drive robot operated by a human arm, and a ‘slave’ robot, which is an x-y type pallet located at a remote site. When the active handle of the master is moved along an arbitrary trajectory, the remote slave duplicates the motion in a constrained or unconstrained environment. The behaviour of the environment is felt by the operator through the active handle of the master. This is achieved by feeding back the disturbance and reaction forces from the environment and the loads to the active handle. Consequently, the operator gets a feel of the task being performed without being physically at the location of the task. A control scheme is devised for the telerobotic system to establish smooth communication between the master and slave robots. This control scheme integrates the dynamics of the human arm, actuators and the environment in the closed-loop system. It was shown that the experimental and the theoretical results are in good agreement and that the design controller is robust to constrained/unconstrained environments.


2010 ◽  
Vol 22 (6) ◽  
pp. 784-789 ◽  
Author(s):  
Hiroyuki Shinoda ◽  
◽  
Hiromasa Chigusa ◽  
Yasutoshi Makino ◽  
◽  
...  

The stretchable sensor skin we propose uses microwaves propagating in a two-Dimensional Signal Transmission (2DST) sheet. A small tactile sensor chip with a pair of Resonant Proximity Connectors (RPCs) couples with 2D microwaves carrying signals. Chip operating power is also supplied by 2D microwaves. The RPC is a spiral electrode whose arc length is a quarter of the electromagnetic wavelength. Chip operating power is supplied by 2D microwaves. Sensor chips are connected to the 2DST sheet by RPCs without electrical contacts anywhere on the sheet. Resonance induced at the electrode reduces impedance between the connector and the conductive layer of the 2DST sheet, enabling sensor chips to be connected stably to the sheet. Experimental results on the RPC show the concept to be effective. We fabricated a 1-bit (touch detection) tactile sensor element consisting of a RFID-tag and RPCs, and confirmed in experiments that the sensor element operates in a stretchable 2DST sheet.


2021 ◽  
Author(s):  
Zhaocheng Lu ◽  
Andrew Norris

Abstract A passive method of realizing nonreciprocal wave propagation in a two-dimensional (2D) lattice is proposed, using bilinear springs combined with the necessary spatial asymmetry to provide a stable and strong departure from reciprocity. The bilinear property is unique among nonlinear mechanisms in that it is independent of amplitude but sensitive to the sign of the wave motion; the 2D setup allows the flexibility of generating spatial asymmetry at both small and large scales. The starting point is a linear 2D monatomic spring-mass lattice with strong directionally dependent wave propagation. The source and receiver are aligned so that there is virtually no direct wave transmission between them. Adding a region of bilinearity combined with spatial asymmetry that is not in the direct path between the source and receiver causes signal transmission via nonreciprocal scattering. A variety of spatially asymmetric bilinear configurations are considered, ranging from compact modulations confined within the unit cell to extended ones over the whole section, to obtain different dynamic nonreciprocal effects. Simulations illustrate how the combination of bilinearity and spatial asymmetry ensures a passive amplitude-independent nonreciprocal 2D system for a variety of different excitations.


Sign in / Sign up

Export Citation Format

Share Document