Flexible Tactile Sensor Skin Using Wireless Sensor Elements Coupled with 2D Microwaves

2010 ◽  
Vol 22 (6) ◽  
pp. 784-789 ◽  
Author(s):  
Hiroyuki Shinoda ◽  
◽  
Hiromasa Chigusa ◽  
Yasutoshi Makino ◽  
◽  
...  

The stretchable sensor skin we propose uses microwaves propagating in a two-Dimensional Signal Transmission (2DST) sheet. A small tactile sensor chip with a pair of Resonant Proximity Connectors (RPCs) couples with 2D microwaves carrying signals. Chip operating power is also supplied by 2D microwaves. The RPC is a spiral electrode whose arc length is a quarter of the electromagnetic wavelength. Chip operating power is supplied by 2D microwaves. Sensor chips are connected to the 2DST sheet by RPCs without electrical contacts anywhere on the sheet. Resonance induced at the electrode reduces impedance between the connector and the conductive layer of the 2DST sheet, enabling sensor chips to be connected stably to the sheet. Experimental results on the RPC show the concept to be effective. We fabricated a 1-bit (touch detection) tactile sensor element consisting of a RFID-tag and RPCs, and confirmed in experiments that the sensor element operates in a stretchable 2DST sheet.

Robotica ◽  
1988 ◽  
Vol 6 (1) ◽  
pp. 23-30 ◽  
Author(s):  
Lim Kah-Bin ◽  
Chong Yoon-Song

SUMMARYA low cost tactile sensor using commercially available conductive silicone rubber has been developed. It comprises a two dimensional array arranged in 3 mm centre-to-centre distance. Each sensor element has a zero-force resistance of about 0.3 kohm and it has a logarithmic characteristic curve of resistance versus force. An 8 × 8 prototype tactile sensor array over an area of 3 cm × 3 cm has been fabricated and mounted on the gripper of a robot for testing and evaluation. The associated software has also been developed. The limitations of the sensor are also discussed.


2020 ◽  
Vol 146 ◽  
pp. 03004
Author(s):  
Douglas Ruth

The most influential parameter on the behavior of two-component flow in porous media is “wettability”. When wettability is being characterized, the most frequently used parameter is the “contact angle”. When a fluid-drop is placed on a solid surface, in the presence of a second, surrounding fluid, the fluid-fluid surface contacts the solid-surface at an angle that is typically measured through the fluid-drop. If this angle is less than 90°, the fluid in the drop is said to “wet” the surface. If this angle is greater than 90°, the surrounding fluid is said to “wet” the surface. This definition is universally accepted and appears to be scientifically justifiable, at least for a static situation where the solid surface is horizontal. Recently, this concept has been extended to characterize wettability in non-static situations using high-resolution, two-dimensional digital images of multi-component systems. Using simple thought experiments and published experimental results, many of them decades old, it will be demonstrated that contact angles are not primary parameters – their values depend on many other parameters. Using these arguments, it will be demonstrated that contact angles are not the cause of wettability behavior but the effect of wettability behavior and other parameters. The result of this is that the contact angle cannot be used as a primary indicator of wettability except in very restricted situations. Furthermore, it will be demonstrated that even for the simple case of a capillary interface in a vertical tube, attempting to use simply a two-dimensional image to determine the contact angle can result in a wide range of measured values. This observation is consistent with some published experimental results. It follows that contact angles measured in two-dimensions cannot be trusted to provide accurate values and these values should not be used to characterize the wettability of the system.


2021 ◽  
pp. 004051752198978
Author(s):  
Huating Tu ◽  
Yaya Zhang ◽  
Hong Hong ◽  
Jiyong Hu ◽  
Xin Ding

Nowadays, the chipless radio frequency identification (RFID) tag is attracting significant attention owing to its immense potential in tracking. However, most of the chipless tags are fabricated on hard printed circuit boards, and the wearable fabric-based chipless tag is still in the research stage. In this paper, a symmetrical 3rd L-shaped multi-resonator wearable chipless RFID tag is designed and screen-printed onto fabric. In order to investigate the influence of the non-uniform conductive layer on the signal transmission at high frequency, the surface and cross-sectional topographies of the printed conductive film are analyzed and the frequency response characteristics are simulated and measured. The obtained results show that the common fabric can be used as the substrate to screen print the L-shaped multi-resonators of the chipless RFID tag, and the quality of the screen printed line, especially a narrow line, significantly affects the radio frequency performance. For the screen-printed 3rd L-shaped stub resonators, the relative frequency shift compared with the simulation results are 0.99%, 0.88% and 2.26%, respectively. Generally, the surface morphology of fabric and screen-printed precision are critical in improving the performance of L-shaped multi-resonators.


2013 ◽  
Vol 284-287 ◽  
pp. 2005-2008 ◽  
Author(s):  
Jium Ming Lin ◽  
Kuo Hsiung Cho ◽  
Cheng Hung Lin ◽  
Hung Han Lu

Five novel ideas are proposed in this paper to integrate an active RFID tag with thermal convection angular accelerometer on a flexible substrate, thus the device is a wireless sensor. The first innovative idea is that this device is without any movable parts, so it is very reliable. The second new idea is that it is made on a flexible substrate, such as plastic or polyimide, thus it can save more power. The third new idea is that the xenon gas is applied in the chamber to conduct the heat instead of the traditional Carbon dioxide. CO2 can produce oxidation effect to the heater and thermal sensors, while the xenon not. The fourth new idea is to apply a hemi-spherical chamber; it is more streamline in nature with less drag effect to ease the fluid flow and yield quicker response. The fifth new idea and the most powerful one is that the angular accelerometer is integrated with an active RFID tag on the same flexible substrate, thus the device becomes a more useful wireless sensor. Note the linearity, sensitivity, and response times of step-input angular accelerations are better for the hemi-spherical chamber filled with Xe gas. The sensitivity is 71.4°C/(rad/s2) and the response time is 60μs.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Ming Xia ◽  
Peiliang Sun ◽  
Xiaoyan Wang ◽  
Yan Jin ◽  
Qingzhang Chen

Localization is a fundamental research issue in wireless sensor networks (WSNs). In most existing localization schemes, several beacons are used to determine the locations of sensor nodes. These localization mechanisms are frequently based on an assumption that the locations of beacons are known. Nevertheless, for many WSN systems deployed in unstable environments, beacons may be moved unexpectedly; that is, beacons are drifting, and their location information will no longer be reliable. As a result, the accuracy of localization will be greatly affected. In this paper, we propose a distributed beacon drifting detection algorithm to locate those accidentally moved beacons. In the proposed algorithm, we designed both beacon self-scoring and beacon-to-beacon negotiation mechanisms to improve detection accuracy while keeping the algorithm lightweight. Experimental results show that the algorithm achieves its designed goals.


Robotica ◽  
1983 ◽  
Vol 1 (4) ◽  
pp. 217-222 ◽  
Author(s):  
Gen-Ichiro Kinoshita

SUMMARYThe tactile sensor is constructed as a part of the finger of a parallel jaw hand; it is of the size of a finger and allows for a large displacement of the sensor element in response to force. The structure of the tactile sensor incorporates 20 successively and closely aligned elements, which allow for a 2.5 mm maximum displacement for each element. In the described experiments we present the capabilities of the tactile sensor. The tactile sensor has the functions of: 1) discriminating the shape of the partial surface of an object; and 2) tracing by finger on the surface along the profile of an object.


Author(s):  
Lukas Gortschacher ◽  
Jasmin Grosinger ◽  
Hasan Noor Khan ◽  
Wolfgang Bosch

Sign in / Sign up

Export Citation Format

Share Document