scholarly journals Differentiating Attacks and Faults in Energy Aware Smart Home System using Supervised Machine Learning

Author(s):  
Georgios Tertytchny ◽  
Nicolas Nicolaou ◽  
Maria K. Michael
2020 ◽  
Vol 16 (1) ◽  
pp. 17-31 ◽  
Author(s):  
K.S. Gayathri ◽  
K.S. Easwarakumar ◽  
Susan Elias

Assistive health care system is a viable solution for elderly care to offer independent living. Such health care systems are feasible through smart homes, which are intended to enhance the living quality of the occupant. Activities of daily living (ADL) are considered in the design of a smart home and are extended to abnormality detection in the case of health care. Abnormality in occupant behavior is the deviation of ongoing activity with that of the built activity model. Generally, supervised machine learning strategies or knowledge engineering strategies are employed in the process of activity modeling. Supervised machine learning approaches incur overheads in annotating the dataset, while the knowledge modeling approaches incur overhead by being dependent on the domain expert for occupant specific knowledge. The proposed approach on the other hand, employs an unsupervised machine learning strategy to readily extract knowledge from unlabelled data using contextual pattern clustering and subsequently represents it as ontology activity model. Ontology offers enhanced activity recognition through its semantically clear representation and reasoning, it has restriction in handling temporal data. Hence, this article in addition to unsupervised modeling focuses at enabling temporal reasoning within ontology using fuzzy logic. The proposed fuzzy ontology activity recognition (FOAR) framework represents an activity model as a fuzzy temporal ontology. Fuzzy SWRL rules modeled within ontology aid activity recognition and abnormality detection for health care. The experimental results show that the proposed FOAR has better performance in abnormality detection than that of the existing systems.


Author(s):  
Ivan Cvitić ◽  
Dragan Peraković ◽  
Marko Periša ◽  
Brij Gupta

AbstractThe emergence of the Internet of Things (IoT) concept as a new direction of technological development raises new problems such as valid and timely identification of such devices, security vulnerabilities that can be exploited for malicious activities, and management of such devices. The communication of IoT devices generates traffic that has specific features and differences with respect to conventional devices. This research seeks to analyze the possibilities of applying such features for classifying devices, regardless of their functionality or purpose. This kind of classification is necessary for a dynamic and heterogeneous environment, such as a smart home where the number and types of devices grow daily. This research uses a total of 41 IoT devices. The logistic regression method enhanced by the concept of supervised machine learning (logitboost) was used for developing a classification model. Multiclass classification model was developed using 13 network traffic features generated by IoT devices. Research has shown that it is possible to classify devices into four previously defined classes with high performances and accuracy (99.79%) based on the traffic flow features of such devices. Model performance measures such as precision, F-measure, True Positive Ratio, False Positive Ratio and Kappa coefficient all show high results (0.997–0.999, 0.997–0.999, 0.997–0.999, 0–0.001 and 0.9973, respectively). Such a developed model can have its application as a foundation for monitoring and managing solutions of large and heterogeneous IoT environments such as Industrial IoT, smart home, and similar.


2020 ◽  
Vol 14 (2) ◽  
pp. 140-159
Author(s):  
Anthony-Paul Cooper ◽  
Emmanuel Awuni Kolog ◽  
Erkki Sutinen

This article builds on previous research around the exploration of the content of church-related tweets. It does so by exploring whether the qualitative thematic coding of such tweets can, in part, be automated by the use of machine learning. It compares three supervised machine learning algorithms to understand how useful each algorithm is at a classification task, based on a dataset of human-coded church-related tweets. The study finds that one such algorithm, Naïve-Bayes, performs better than the other algorithms considered, returning Precision, Recall and F-measure values which each exceed an acceptable threshold of 70%. This has far-reaching consequences at a time where the high volume of social media data, in this case, Twitter data, means that the resource-intensity of manual coding approaches can act as a barrier to understanding how the online community interacts with, and talks about, church. The findings presented in this article offer a way forward for scholars of digital theology to better understand the content of online church discourse.


2017 ◽  
Author(s):  
Sabrina Jaeger ◽  
Simone Fulle ◽  
Samo Turk

Inspired by natural language processing techniques we here introduce Mol2vec which is an unsupervised machine learning approach to learn vector representations of molecular substructures. Similarly, to the Word2vec models where vectors of closely related words are in close proximity in the vector space, Mol2vec learns vector representations of molecular substructures that are pointing in similar directions for chemically related substructures. Compounds can finally be encoded as vectors by summing up vectors of the individual substructures and, for instance, feed into supervised machine learning approaches to predict compound properties. The underlying substructure vector embeddings are obtained by training an unsupervised machine learning approach on a so-called corpus of compounds that consists of all available chemical matter. The resulting Mol2vec model is pre-trained once, yields dense vector representations and overcomes drawbacks of common compound feature representations such as sparseness and bit collisions. The prediction capabilities are demonstrated on several compound property and bioactivity data sets and compared with results obtained for Morgan fingerprints as reference compound representation. Mol2vec can be easily combined with ProtVec, which employs the same Word2vec concept on protein sequences, resulting in a proteochemometric approach that is alignment independent and can be thus also easily used for proteins with low sequence similarities.


2020 ◽  
Vol 28 (2) ◽  
pp. 253-265 ◽  
Author(s):  
Gabriela Bitencourt-Ferreira ◽  
Amauri Duarte da Silva ◽  
Walter Filgueira de Azevedo

Background: The elucidation of the structure of cyclin-dependent kinase 2 (CDK2) made it possible to develop targeted scoring functions for virtual screening aimed to identify new inhibitors for this enzyme. CDK2 is a protein target for the development of drugs intended to modulate cellcycle progression and control. Such drugs have potential anticancer activities. Objective: Our goal here is to review recent applications of machine learning methods to predict ligand- binding affinity for protein targets. To assess the predictive performance of classical scoring functions and targeted scoring functions, we focused our analysis on CDK2 structures. Methods: We have experimental structural data for hundreds of binary complexes of CDK2 with different ligands, many of them with inhibition constant information. We investigate here computational methods to calculate the binding affinity of CDK2 through classical scoring functions and machine- learning models. Results: Analysis of the predictive performance of classical scoring functions available in docking programs such as Molegro Virtual Docker, AutoDock4, and Autodock Vina indicated that these methods failed to predict binding affinity with significant correlation with experimental data. Targeted scoring functions developed through supervised machine learning techniques showed a significant correlation with experimental data. Conclusion: Here, we described the application of supervised machine learning techniques to generate a scoring function to predict binding affinity. Machine learning models showed superior predictive performance when compared with classical scoring functions. Analysis of the computational models obtained through machine learning could capture essential structural features responsible for binding affinity against CDK2.


Sign in / Sign up

Export Citation Format

Share Document