Fake News Classification: A Quantitative Research Description

Author(s):  
Rachna Jain ◽  
Deepak Kumar Jain ◽  
Dharana ◽  
Nitika Sharma

Social media can render content circulating to reach millions with a knack to influence people, despite the questionable authencity of the facts. Internet sources are the most convenient and easy approach to obtain any information these days. Fake news has become the topic of interest for academicians and the rest of society. This kind of propaganda has the power to influence the general perception, offering political groups the ability to control the results of democratic affairs such as elections. Automatic identification of fake news has emerged as one of the significant problems due to the high risks involved. It is challenging in a way because of the complexity levels of accurately interpreting the data. An extensive search has already been performed on English language news data. Our work presents a comparative analysis of fake news classifiers on the low resource Bengali language ‘ban fake news’ dataset from Kaggle. The analysis presented compares deep learning techniques such as LSTM (Long short-term Memory) and BiLSTM (Bi-directional Long short-term Memory) and machine learning methods like Naive Bayes, Passive Aggressive Classifier (PAC), and Random Forest. The comparison has been drawn based on classification metrics such as accuracy, precision, recall, and F1 score. The deep learning method BiLSTM shows 55.92% accuracy while Random Forest, in contrast, has outperformed all the other methods with an accuracy of 62.37%. The work presented in this paper sets a basis for researchers to select the optimum classifiers for their approach towards fake news detection.

Online media for news consumption has doubtful advantages. From one perspective, it has minimal expense, simple access, and fast dispersal of data which leads individuals to search out and devour news from online media. On the other hand, it increases the wide spread of "counterfeit news", i.e., inferior quality news with purposefully bogus data. The broad spread of fake news contrarily affects people and society. Hence, fake news detection in social media has become an emerging research topic that is drawing attention from various researchers. In past, many creators proposed the utilization of text mining procedures and AI strategies to examine textual data and helps to foresee the believability of news. With more computational capacities and to deal with enormous datasets, deep learning models present a better presentation over customary text mining strategies and AI methods. Normally deep learning model, for example, LSTM model can identify complex patterns in the data. Long short term memory is a tree organized recurrent neural network (RNN) used to examine variable length sequential information. In our proposed framework we set up a fake news identification model dependent on LSTM neural network. Openly accessible unstructured news datasets are utilized to evaluate the exhibition of the model. The outcome shows the prevalence and exactness of LSTM model over the customary techniques specifically CNN for fake news recognition.


Author(s):  
Claire Brenner ◽  
Jonathan Frame ◽  
Grey Nearing ◽  
Karsten Schulz

ZusammenfassungDie Verdunstung ist ein entscheidender Prozess im globalen Wasser‑, Energie- sowie Kohlenstoffkreislauf. Daten zur räumlich-zeitlichen Dynamik der Verdunstung sind daher von großer Bedeutung für Klimamodellierungen, zur Abschätzung der Auswirkungen der Klimakrise sowie nicht zuletzt für die Landwirtschaft.In dieser Arbeit wenden wir zwei Machine- und Deep Learning-Methoden für die Vorhersage der Verdunstung mit täglicher und halbstündlicher Auflösung für Standorte des FLUXNET-Datensatzes an. Das Long Short-Term Memory Netzwerk ist ein rekurrentes neuronales Netzwerk, welchen explizit Speichereffekte berücksichtigt und Zeitreihen der Eingangsgrößen analysiert (entsprechend physikalisch-basierten Wasserbilanzmodellen). Dem gegenüber gestellt werden Modellierungen mit XGBoost, einer Entscheidungsbaum-Methode, die in diesem Fall nur Informationen für den zu bestimmenden Zeitschritt erhält (entsprechend physikalisch-basierten Energiebilanzmodellen). Durch diesen Vergleich der beiden Modellansätze soll untersucht werden, inwieweit sich durch die Berücksichtigung von Speichereffekten Vorteile für die Modellierung ergeben.Die Analysen zeigen, dass beide Modellansätze gute Ergebnisse erzielen und im Vergleich zu einem ausgewerteten Referenzdatensatz eine höhere Modellgüte aufweisen. Vergleicht man beide Modelle, weist das LSTM im Mittel über alle 153 untersuchten Standorte eine bessere Übereinstimmung mit den Beobachtungen auf. Allerdings zeigt sich eine Abhängigkeit der Güte der Verdunstungsvorhersage von der Vegetationsklasse des Standorts; vor allem wärmere, trockene Standorte mit kurzer Vegetation werden durch das LSTM besser repräsentiert, wohingegen beispielsweise in Feuchtgebieten XGBoost eine bessere Übereinstimmung mit den Beobachtung liefert. Die Relevanz von Speichereffekten scheint daher zwischen Ökosystemen und Standorten zu variieren.Die präsentierten Ergebnisse unterstreichen das Potenzial von Methoden der künstlichen Intelligenz für die Beschreibung der Verdunstung.


2021 ◽  
Vol 13 (10) ◽  
pp. 1953
Author(s):  
Seyed Majid Azimi ◽  
Maximilian Kraus ◽  
Reza Bahmanyar ◽  
Peter Reinartz

In this paper, we address various challenges in multi-pedestrian and vehicle tracking in high-resolution aerial imagery by intensive evaluation of a number of traditional and Deep Learning based Single- and Multi-Object Tracking methods. We also describe our proposed Deep Learning based Multi-Object Tracking method AerialMPTNet that fuses appearance, temporal, and graphical information using a Siamese Neural Network, a Long Short-Term Memory, and a Graph Convolutional Neural Network module for more accurate and stable tracking. Moreover, we investigate the influence of the Squeeze-and-Excitation layers and Online Hard Example Mining on the performance of AerialMPTNet. To the best of our knowledge, we are the first to use these two for regression-based Multi-Object Tracking. Additionally, we studied and compared the L1 and Huber loss functions. In our experiments, we extensively evaluate AerialMPTNet on three aerial Multi-Object Tracking datasets, namely AerialMPT and KIT AIS pedestrian and vehicle datasets. Qualitative and quantitative results show that AerialMPTNet outperforms all previous methods for the pedestrian datasets and achieves competitive results for the vehicle dataset. In addition, Long Short-Term Memory and Graph Convolutional Neural Network modules enhance the tracking performance. Moreover, using Squeeze-and-Excitation and Online Hard Example Mining significantly helps for some cases while degrades the results for other cases. In addition, according to the results, L1 yields better results with respect to Huber loss for most of the scenarios. The presented results provide a deep insight into challenges and opportunities of the aerial Multi-Object Tracking domain, paving the way for future research.


2021 ◽  
Vol 366 (1) ◽  
Author(s):  
Zhichao Wen ◽  
Shuhui Li ◽  
Lihua Li ◽  
Bowen Wu ◽  
Jianqiang Fu

Energies ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3517 ◽  
Author(s):  
Anh Ngoc-Lan Huynh ◽  
Ravinesh C. Deo ◽  
Duc-Anh An-Vo ◽  
Mumtaz Ali ◽  
Nawin Raj ◽  
...  

This paper aims to develop the long short-term memory (LSTM) network modelling strategy based on deep learning principles, tailored for the very short-term, near-real-time global solar radiation (GSR) forecasting. To build the prescribed LSTM model, the partial autocorrelation function is applied to the high resolution, 1 min scaled solar radiation dataset that generates statistically significant lagged predictor variables describing the antecedent behaviour of GSR. The LSTM algorithm is adopted to capture the short- and the long-term dependencies within the GSR data series patterns to accurately predict the future GSR at 1, 5, 10, 15, and 30 min forecasting horizons. This objective model is benchmarked at a solar energy resource rich study site (Bac-Ninh, Vietnam) against the competing counterpart methods employing other deep learning, a statistical model, a single hidden layer and a machine learning-based model. The LSTM model generates satisfactory predictions at multiple-time step horizons, achieving a correlation coefficient exceeding 0.90, outperforming all of the counterparts. In accordance with robust statistical metrics and visual analysis of all tested data, the study ascertains the practicality of the proposed LSTM approach to generate reliable GSR forecasts. The Diebold–Mariano statistic test also shows LSTM outperforms the counterparts in most cases. The study confirms the practical utility of LSTM in renewable energy studies, and broadly in energy-monitoring devices tailored for other energy variables (e.g., hydro and wind energy).


Sign in / Sign up

Export Citation Format

Share Document