PARP: A Parallel Traffic Condition Driven Route Planning Model on Dynamic Road Networks

2021 ◽  
Vol 12 (6) ◽  
pp. 1-24
Author(s):  
Tianlun Dai ◽  
Bohan Li ◽  
Ziqiang Yu ◽  
Xiangrong Tong ◽  
Meng Chen ◽  
...  

The problem of route planning on road network is essential to many Location-Based Services (LBSs). Road networks are dynamic in the sense that the weights of the edges in the corresponding graph constantly change over time, representing evolving traffic conditions. Thus, a practical route planning strategy is required to supply the continuous route optimization considering the historic, current, and future traffic condition. However, few existing works comprehensively take into account these various traffic conditions during the route planning. Moreover, the LBSs usually suffer from extensive concurrent route planning requests in rush hours, which imposes a pressing need to handle numerous queries in parallel for reducing the response time of each query. However, this issue is also not involved by most existing solutions. We therefore investigate a parallel traffic condition driven route planning model on a cluster of processors. To embed the future traffic condition into the route planning, we employ a GCN model to periodically predict the travel costs of roads within a specified time period, which facilitates the robustness of the route planning model against the varying traffic condition. To reduce the response time, a Dual-Level Path (DLP) index is proposed to support a parallel route planning algorithm with the filter-and-refine principle. The bottom level of DLP partitions the entire graph into different subgraphs, and the top level is a skeleton graph that consists of all border vertices in all subgraphs. The filter step identifies a global directional path for a given query based on the skeleton graph. In the refine step, the overall route planning for this query is decomposed into multiple sub-optimizations in the subgraphs passed through by the directional path. Since the subgraphs are independently maintained by different processors, the sub-optimizations of extensive queries can be operated in parallel. Finally, extensive evaluations are conducted to confirm the effectiveness and superiority of the proposal.

Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-15
Author(s):  
Shuang Wang ◽  
Yingchun Xu ◽  
Yinzhe Wang ◽  
Hezhi Liu ◽  
Qiaoqiao Zhang ◽  
...  

In recent years, research on location-based services has received a lot of interest, in both industry and academic aspects, due to a wide range of potential applications. Among them, one of the active topic areas is the route planning on a point-of-interest (POI) network. We study the top-k optimal routes querying on large, general graphs where the edge weights may not satisfy the triangle inequality. The query strives to find the top-k optimal routes from a given source, which must visit a number of vertices with all the services that the user needs. Existing POI query methods mainly focus on the textual similarities and ignore the semantic understanding of keywords in spatial objects and queries. To address this problem, this paper studies the semantic similarity of POI keyword searching in the route. Another problem is that most of the previous studies consider that a POI belongs to a category, and they do not consider that a POI may provide various kinds of services even in the same category. So, we propose a novel top-k optimal route planning algorithm based on semantic perception (KOR-SP). In KOR-SP, we define a dominance relationship between two partially explored routes which leads to a smaller searching space and consider the semantic similarity of keywords and the number of single POI’s services. We use an efficient label indexing technique for the shortest path queries to further improve efficiency. Finally, we perform an extensive experimental evaluation on multiple real-world graphs to demonstrate that the proposed methods deliver excellent performance.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Qianyu Zhang ◽  
Xianfeng Ding ◽  
Jingyu Zhou ◽  
Yi Nie

Abstract As the core technology in the field of aircraft, the route planning has attracted much attention. However, due to the complexity of the structure and performance constraints of the aircraft, the route planning algorithm does not have well universality, so it cannot be used in a complex environment. In the paper, a multi-constraints and dual-targets aircraft route planning model was established for the real-time requirements of space flight, the dynamic changes of flight environment with time, the accuracy requirements of positioning errors in the safety area, and the minimum turning radius constraints. Based on the directed graph and dynamic programming ideas, the model simulation and model validation were carried out with the data of F question in the “16th Graduate Mathematical Modeling Contest”. The results showed that the optimal path length obtained in data set 1 was 124.61 km, the number of corrections was 11 times, the solution time was 2.3768 seconds, the optimal path length obtained in data set 2 was 110.00 km, and the number of corrections was 12 times. The solution time was 0.0168 seconds. Multi-constraints and dual-targets aircraft route planning model can plan the flight path of the aircraft intuitively and timely, which confirmed the effectiveness of the model.


Author(s):  
Quan Shao ◽  
Chenchen Xu ◽  
Yan Zhu

This paper attempts to develop an efficient route planning algorithm to guide the operations of the multi-helicopter search and rescue in emergency. Route planning model of multi-helicopter cooperative search and rescue activity was established first, based on preference ordering of search and rescue objectives, as well as behavioral model of rescue helicopter and on-board detector. Given the route planning model, a multi-helicopter search and rescue route planning general algorithm was developed. The operation mechanism of ant colony algorithm was improved by introducing cooperative modes and the pheromone updating mechanism into existing methods. Furthermore, two cooperative search and rescue modes were studied: one is Overall Cooperative Search and Rescue Mode (OCSARM), in which many ants search and rescue the same region all together; the other is Blocking Cooperative Search and Rescue Mode (BCSARM), which partitions the region into small blocks and appoints helicopter with corresponding performance capabilities. Simulated experiments were developed to test the operability of proposed multi-helicopter search and rescue route planning algorithm. The comparison with existing algorithm shows that the algorithm proposed in this paper reduces computational complexity and evidently enhances algorithm efficiency. Results also indicate that this algorithm not only has the capability of comparing efficiency of two search and rescue modes in different mission requirements but also helps select search and rescue modes before rescue operation.


2018 ◽  
Vol 2018 ◽  
pp. 1-11
Author(s):  
Hongying Fei ◽  
Chengyi Zhang

With the rapid development of modern automotive logistics industry, vehicle logistics has drawn more and more attention. Since the vehicle transporters mainly are the severe-polluting heavy-duty vehicles and their exhaust emissions vary under different traffic conditions, it is necessary to improve the planning of road motor-transporting services by taking into account road traffic condition, especially for urban areas. This study aims at minimizing the composite cost, including both the economic cost related to the driver cost and fuel consumption, and the social cost related to the vehicle emissions. The dynamic road traffic condition is imitated dynamically with a discretization technique. A metaheuristic is applied with data collected from a dense district in a huge city. Experimental results show that the proposed approach can always converge quickly to the best solution and the solution with minimal composite cost can always dominate the other solutions with classic route optimization goals.


2021 ◽  
Vol 13 (10) ◽  
pp. 5492
Author(s):  
Cristina Maria Păcurar ◽  
Ruxandra-Gabriela Albu ◽  
Victor Dan Păcurar

The paper presents an innovative method for tourist route planning inside a destination. The necessity of reorganizing the tourist routes within a destination comes as an immediate response to the Covid-19 crisis. The implementation of the method inside tourist destinations can bring an important advantage in transforming a destination into a safer one in times of Covid-19 and post-Covid-19. The existing trend of shortening the tourist stay length has been accelerated while the epidemic became a pandemic. Moreover, the wariness for future pandemics has brought into spotlight the issue of overcrowded attractions inside a destination at certain moments. The method presented in this paper proposes a backtracking algorithm, more precisely an adaptation of the travelling salesman problem. The method presented is aimed to facilitate the navigation inside a destination and to revive certain less-visited sightseeing spots inside a destination while facilitating conformation with the social distancing measures imposed for Covid-19 control.


2011 ◽  
Vol 142 ◽  
pp. 12-15
Author(s):  
Ping Feng

The paper puts forward the dynamic path planning algorithm based on improving chaos genetic algorithm by using genetic algorithms and chaos search algorithm. In the practice of navigation, the algorithm can compute at the best path to meet the needs of the navigation in such a short period of planning time. Furthermore,this algorithm can replan a optimum path of the rest paths after the traffic condition in the sudden.


Sign in / Sign up

Export Citation Format

Share Document