Joint Augmented Reality Video Analytics and Artificial Intelligence Supervision

2021 ◽  
Author(s):  
Benjamin Sho ◽  
Ryan Anthony De Belen ◽  
Rowan T Hughes ◽  
Tomasz Bednarz
2021 ◽  
Vol 11 (7) ◽  
pp. 3253
Author(s):  
Umile Giuseppe Longo ◽  
Sergio De Salvatore ◽  
Vincenzo Candela ◽  
Giuliano Zollo ◽  
Giovanni Calabrese ◽  
...  

Background: The application of virtual and augmented reality technologies to orthopaedic surgery training and practice aims to increase the safety and accuracy of procedures and reducing complications and costs. The purpose of this systematic review is to summarise the present literature on this topic while providing a detailed analysis of current flaws and benefits. Methods: A comprehensive search on the PubMed, Cochrane, CINAHL, and Embase database was conducted from inception to February 2021. The Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines were used to improve the reporting of the review. The Cochrane Risk of Bias Tool and the Methodological Index for Non-Randomized Studies (MINORS) was used to assess the quality and potential bias of the included randomized and non-randomized control trials, respectively. Results: Virtual reality has been proven revolutionary for both resident training and preoperative planning. Thanks to augmented reality, orthopaedic surgeons could carry out procedures faster and more accurately, improving overall safety. Artificial intelligence (AI) is a promising technology with limitless potential, but, nowadays, its use in orthopaedic surgery is limited to preoperative diagnosis. Conclusions: Extended reality technologies have the potential to reform orthopaedic training and practice, providing an opportunity for unidirectional growth towards a patient-centred approach.


2021 ◽  
pp. 49-52
Author(s):  
Gaurvi Vikram Kamra ◽  
Ankur Sharma

The concept of "articial intelligence" (AI) refers to machines that are capable of executing human-like tasks. AI can also be dened as a eld concerned with computational models that can reason and act intelligently. Perspicacious software for data computation has become a necessity as the amount of documented information and patient data has increased dramatically. The applicability, limitations, and potential future of AI-based dental diagnoses, treatment planning, and conduct are described in this concise narrative overview. AI has been used in a variety of ways, from processing of data and locating relevant information to using neural networks for diagnosis and the introduction of augmented reality and virtual reality in dental education. AI-based apps will improve patient care by relieving the dental workforce of tedious routine duties, improving population health at lower costs, and eventually facilitating individualized, anticipatory, prophylactic, and collaborative dentistry. The convergence of AI and digitization has ushered in a new age in dentistry, with tremendously promising future prospects.The applicability, limitations, and potential future of AI-based dental diagnoses, treatment planning, and conduct are described in this concise narrative overview.


Author(s):  
Utku Köse

Objective of this chapter is to introduce an Augmented Reality based intelligent mobile application (M-Learning application) to support courses of Computer Education. In the study, it was aimed to provide an alternative way of improving M-Learning experiences by employing both Augmented Reality and Artificial Intelligence based approaches in a common environment. Briefly, the application is able to use an intelligent mechanism evaluating students' several dynamic learning parameters to match them with the most appropriate course materials provided over the system. So, each student can encounter with appropriate course materials matching with their states over the application system. The related course materials include both AR based ones and standard ones as uploaded by teachers. An evaluation based flow has been run in the study by using the developed application through courses of Computer Education and the obtained results have shown that the application is effective and successful enough at improving students' learning experiences and achieving a good Open Computer Education.


Author(s):  
Anita M. Cassard ◽  
Brian W. Sloboda

This chapter presents some of the possibilities and approaches that are used in the application of AI (artificial intelligence) and AR (augmented reality) in the new learning environments. AI will add another dimension to distance learning or eLearning that in some cases already includes AR (augmented reality) virtual learning environments. Because of this advent in available technology and the impact it will have on learning, assessment of newly structured parameters and their impact on student outcomes is crucial when measuring student learning. For some of us there might be a concern about the domination of AI as seen in the movie The Terminator, but we can take ease in the notion that it is not only AI versus humans. A new version of human augmented intelligence (HI) is being developed as we speak.


2018 ◽  
pp. 261-264
Author(s):  
Ingmar Weber

Changes in the global digital landscape over the past decade or so have transformed many aspects of society, including how people communicate, socialize, and organize. These transformations have also reconfigured how companies conduct their businesses and altered how states think about security and interact with their citizens. Glancing into the future, there is good reason to believe that nascent technologies such as augmented reality will continue to change how people connect, blurring the lines between our online and offline worlds. Recent breakthroughs in the field of artificial intelligence will also have a profound impact on many aspects of our lives, ranging from the mundane—chat bots as convenient, always available customer support—to the disruptive—replacing medical doctors with automated diagnosis tools....


Author(s):  
Zeenat S. AlKassim ◽  
Nader Mohamed

In this chapter, the authors discuss a unique technology known as the Sixth Sense Technology, highlighting the future opportunities of such technology in integrating the digital world with the real world. Challenges in implementing such technologies are also discussed along with a review of the different possible implementation approaches. This review is performed by exploring the different inventions in areas similar to the Sixth Sense Technology, namely augmented reality (AR), computer vision, image processing, gesture recognition, and artificial intelligence and then categorizing and comparing between them. Lastly, recommendations are discussed for improving such a unique technology that has the potential to create a new trend in human-computer interaction (HCI) in the coming years.


Sign in / Sign up

Export Citation Format

Share Document