Study on the Impact of DASH Streaming Services using Energy Efficient Ethernet

2021 ◽  
Author(s):  
Tito Raúl Vargas ◽  
Juan Carlos Guerri ◽  
Pau Arce
2012 ◽  
Vol 151 ◽  
pp. 583-586
Author(s):  
Shun Fu Jin ◽  
Rong Yu Fan ◽  
Li Chen

In order to improve the energy efficiency and build a green Ethernet, we propose a simple power saving (SPS) scheme with a burst transmission for Energy Efficient Ethernet. In SPS scheme, let the link transfer to the sleep mode as soon as no packets are ready for transmission, whereas let the link return to the awake mode when a fixed number of packets arrive during the sleep mode. We build a vacation queueing model with N strategy to describe the working principle of SPS scheme. By using the method of embedded Markov chain, the formulas of performance measures are given. Finally, numerical results are provided to show the impact of traffic load on system performance.


Author(s):  
Dileep Reddy Bolla ◽  
Jijesh J J ◽  
Mahaveer Penna ◽  
Shiva Shankar

Back Ground/ Aims:: Now-a-days in the Wireless Communications some of the spectrum bands are underutilized or unutilized; the spectrum can be utilized properly by using the Cognitive Radio Techniques using the Spectrum Sensing mechanisms. Objectives:: The prime objective of the research work carried out is to achieve the energy efficiency and to use the spectrum effectively by using the spectrum management concept and achieve better throughput, end to end delay etc., Methods:: The detection of the spectrum hole plays a vital role in the routing of Cognitive Radio Networks (CRNs). While detecting the spectrum holes and the routing, sensing is impacted by the hidden node issues and exposed node issues. The impact of sensing is improved by incorporating the Cooperative Spectrum Sensing (CSS) techniques. Along with these issues the spectrum resources changes time to time in the routing. Results:: All the issues are addressed with An Energy Efficient Spectrum aware Routing (EESR) protocol which improves the timeslot and the routing schemes. The overall network life time is improved with the aid of residual energy concepts and the overall network performance is improved. Conclusion:: The proposed protocol (EESR) is an integrated system with spectrum management and the routing is successfully established to communication in the network and further traffic load is observed to be balanced in the protocol based on the residual energy in a node and further it improves the Network Lifetime of the Overall Network and the Individual CR user, along with this the performance of the proposed protocol outperforms the conventional state of art routing protocols.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4368
Author(s):  
Jitander Kumar Pabani ◽  
Miguel-Ángel Luque-Nieto ◽  
Waheeduddin Hyder ◽  
Pablo Otero

Underwater Wireless Sensor Networks (UWSNs) are subjected to a multitude of real-life challenges. Maintaining adequate power consumption is one of the critical ones, for obvious reasons. This includes proper energy consumption due to nodes close to and far from the sink node (gateway), which affect the overall energy efficiency of the system. These wireless sensors gather and route the data to the onshore base station through the gateway at the sea surface. However, finding an optimum and efficient path from the source node to the gateway is a challenging task. The common reasons for the loss of energy in existing routing protocols for underwater are (1) a node shut down due to battery drainage, (2) packet loss or packet collision which causes re-transmission and hence affects the performance of the system, and (3) inappropriate selection of sensor node for forwarding data. To address these issues, an energy efficient packet forwarding scheme using fuzzy logic is proposed in this work. The proposed protocol uses three metrics: number of hops to reach the gateway node, number of neighbors (in the transmission range of a node) and the distance (or its equivalent received signal strength indicator, RSSI) in a 3D UWSN architecture. In addition, the performance of the system is also tested with adaptive and non-adaptive transmission ranges and scalable number of nodes to see the impact on energy consumption and number of hops. Simulation results show that the proposed protocol performs better than other existing techniques or in terms of parameters used in this scheme.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 509
Author(s):  
Lodovica Valetti ◽  
Francesca Floris ◽  
Anna Pellegrino

The technological innovation in the field of lighting and the need to reduce energy consumption connected to public lighting are leading many municipalities to undertake the renewal of public lighting systems, by replacing the existing luminaires with LED technologies. This renovation process is usually aimed at increasing energy efficiency and reducing maintenance costs, whist improving the lighting performance. To achieve these results, the new luminaires are often characterised by a luminous flux distribution much more downward oriented, which may remarkably influence and alter the perception of the night image of the sites. In this study the implications of the renovation of public lighting systems in terms of lighting and energy performance as well as the effects relating to the alteration of the night image, in historical contexts characterized by significant landscape value, are analysed. Results, along with demonstrating the positive effect that more sustainable and energy efficient lighting systems may have on the lighting performance and energy consumptions of public lighting systems, evidences the impact they may have on the alteration of the nocturnal image.


2018 ◽  
Vol 27 (12) ◽  
pp. 1850195
Author(s):  
P. Mangayarkarasi ◽  
J. Raja

Energy-efficient and reliable data transmission is a challenging task in wireless relay networks (WRNs). Energy efficiency in cellular networks has received significant attention because of the present need for reduced energy consumption, thereby maintaining the profitability of networks, which in turn makes these networks “greener”. The urban cell topography needs more energy to cover the total area of the cell. The base station does not cover the entire area in a given topography and adding more number of base stations is a cost prohibitive one. Energy-efficient relay placement model which calculates the maximum cell coverage is proposed in this work that covers all sectors and also an energy-efficient incremental redundancy-hybrid automatic repeat request (IR-HARQ) power allocation scheme to improve the reliability of the network by improving the overall network throughput is proposed. An IR-HARQ power allocation method maximizes the average incremental mutual information at each round, and its throughput quickly converges to the ergodic channel capacity as the number of retransmissions increases. Simulation results show that the proposed IR-HARQ power allocation achieves full channel capacity with average transmission delay and maintains good throughput under less power consumption. Also the impact of relaying performance on node distances between relay station and base station as well as between user and relay station and relay height for line of sight conditions are analyzed using full decode and forward (FDF) and partial decode and forward (PDF) relaying schemes. Compared to FDF scheme, PDF scheme provides better performance and allows more freedom in the relay placement for an increase in cell coverage.


Sign in / Sign up

Export Citation Format

Share Document