scholarly journals Topophilia, Placemaking, and Boundary Work

2022 ◽  
Vol 6 (GROUP) ◽  
pp. 1-33
Author(s):  
Janghee Cho ◽  
Samuel Beck ◽  
Stephen Voida

The COVID-19 pandemic fundamentally changed the nature of work by shifting most in-person work to a predominantly remote modality as a way to limit the spread of the coronavirus. In the process, the shift to working-from-home rapidly forced the large-scale adoption of groupware technologies. Although prior empirical research examined the experience of working-from-home within small-scale groups and for targeted kinds of work, the pandemic provides HCI and CSCW researchers with an unprecedented opportunity to understand the psycho-social impacts of a universally mandated work-from-home experience rather than an autonomously chosen one. Drawing on boundary theory and a methodological approach grounded in humanistic geography, we conducted a qualitative analysis of Reddit data drawn from two work-from-home-related subreddits between March 2020 and January 2021. In this paper, we present a characterization of the challenges and solutions discussed within these online communities for adapting work to a hybrid or fully remote modality, managing reconfigured work-life boundaries, and reconstructing the home's sense of place to serve multiple, sometimes conflicting roles. We discuss how these findings suggest an emergent interplay among adapted work practice, reimagined physical (and virtual) spaces, and the establishment and continual re-negotiation of boundaries as a means for anticipating the long-term impact of COVID on future conceptualizations of productivity and work.

Coronaviruses ◽  
2020 ◽  
Vol 01 ◽  
Author(s):  
Yam Nath Paudel ◽  
Efthalia Angelopoulou ◽  
Bhupendra Raj Giri ◽  
Christina Piperi ◽  
Iekhsan Othman ◽  
...  

: COVID-19 has emerged as a devastating pandemic of the century that the current generations have ever experienced. The COVID-19 pandemic has infected more than 12 million people around the globe and 0.5 million people have succumbed to death. Due to the lack of effective vaccines against the COVID-19, several nations throughout the globe has imposed a lock-down as a preventive measure to lower the spread of COVID-19 infection. As a result of lock-down most of the universities and research institutes has witnessed a long pause in basic science research ever. Much has been talked about the long-term impact of COVID-19 in economy, tourism, public health, small and large-scale business of several kind. However, the long-term implication of these research lab shutdown and its impact in the basic science research has not been much focused. Herein, we provide a perspective that portrays a common problem of all the basic science researchers throughout the globe and its long-term consequences.


1987 ◽  
Vol 35 (2) ◽  
pp. 135 ◽  
Author(s):  
RB Hacker

Species responses to grazing and environmental factors were studied in an arid halophytic shrubland community in Western Australia. The grazing responses of major shrub species were defined by using reciprocal averaging ordination of botanical data, interpreted in conjunction with a similar ordination of soil chemical properties and measures of soil erosion derived from large-scale aerial photographs. An apparent small-scale interaction between grazing and soil salinity was also defined. Long-term grazing pressure is apparently reduced on localised areas of high salinity. Environmental factors affecting species distribution are complex and appear to include soil salinity, soil cationic balance, geomorphological variation and the influence of cryptogamic crusts on seedling establishment.


2021 ◽  
Vol 2115 (1) ◽  
pp. 012026
Author(s):  
Sonam Solanki ◽  
Gunendra Mahore

Abstract In the current process of producing vermicompost on a large-scale, the main challenge is to keep the worms alive. This is achieved by maintaining temperature and moisture in their living medium. It is a difficult task to maintain these parameters throughout the process. Currently, this is achieved by building infrastructure but this method requires a large initial investment and long-run maintenance. Also, these methods are limited to small-scale production. For large-scale production, a unit is developed which utilises natural airflow with water and automation. The main aim of this unit is to provide favourable conditions to worms in large-scale production with very low investment and minimum maintenance in long term. The key innovation of this research is that the technology used in the unit should be practical and easy to adopt by small farmers. For long-term maintenance of the technology lesser number of parts are used.


Not Just Play ◽  
2019 ◽  
pp. 149-164
Author(s):  
Dana R. Dillard ◽  
Stacey R. Kolomer ◽  
Katharine Hanavan

“Social Work Researchers Go to Camp” offers an overview of camp-related studies published by social workers over the past two decades. Summaries of research are organized by the following categories of camps: bereavement; serious illness, injury, disability, and other challenges; learning disabilities and psychosocial difficulties; and foster care. A section focuses on research with social workers as camp volunteers and staff. The authors argue for the benefits of increasing the quantity of camp research by social workers and research about camp social work practice. Suggestions include engaging in evaluation studies and long-term impact research, as well as pursuing potential topics such as post-traumatic growth research.


Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 1070 ◽  
Author(s):  
Serguey Maximov ◽  
Gareth Harrison ◽  
Daniel Friedrich

Chile has abundant solar and wind resources and renewable generation is becoming competitive with fossil fuel generation. However, due to renewable resource variability their large-scale integration into the electricity grid is not trivial. This study evaluates the long-term impact of grid level energy storage, specifically Pumped Thermal Energy Storage (PTES), on the penetration of solar and wind energies and on CO2 emissions reduction in Chile. A cost based linear optimization model of the Chilean electricity system is developed and used to analyse and optimize different renewable generation, transmission and energy storage scenarios until 2050. For the base scenario of decommissioning ageing coal plants and no new coal and large hydro generation, the generation gap is filled by solar photovoltaic (PV), concentrated solar power (CSP) and flexible gas generation with the associated drop of 78% in the CO2 emission factor. The integration of on-grid 8h capacity storage increases the solar PV fraction which leads to a 6% reduction in operation and investment costs by 2050. However, this does not necessarily lead to further reductions in the long term emissions. Thus, it is crucial to consider all aspects of the energy system when planning the transition to a low carbon electricity system.


Author(s):  
Ganesan S. Marimuthu ◽  
Per Thomas Moe ◽  
Bjarne Salberg ◽  
Jan Inge Audestad

A state-of-the-art small-scale solid state forge welding machine has been fabricated for checking weldability by Shielded Active Gas Forge Welding (SAG-FW) of tubular products applicable predominantly for, but not limited to offshore Industries. Effective, fast and inexpensive welding and testing of joints make this small-scale method suitable for evaluating weldability of a material before starting regular qualification and fabrication in a full-scale welding machine normally located in spool base or offshore. The small-scale machine provides a complete package for pre-qualification studies, including assessment of welding conditions, material flow behavior, heat treatment options. However, there are considerable challenges relating to application of international standards of testing as well as interpretation and use of results in the context of large-scale welding. In this paper results from small-scale welding and weld characterization of an API 5L X65 quality are presented. First, a detailed test plan for analyzing the weld is outlined. This procedure is subsequently applied for checking the welds to be produced in the full-scale machine. Short-comings in using the small-scale process as well as the possible remedies are discussed in detail.


2019 ◽  
Author(s):  
Thibaud M. Fritz ◽  
Sebastian D. Eastham ◽  
Raymond L. Speth ◽  
Steven R. H. Barrett

Abstract. Emissions from aircraft engines contribute to atmospheric NOx, driving changes in both the climate and in surface air quality. Existing atmospheric models typically assume instant dilution of emissions into large-scale grid cells, neglecting non-linear, small-scale processes occurring in aircraft wakes. They also do not explicitly simulate the formation of ice crystals, which could drive local chemical processing. This assumption may lead to errors in estimates of aircraft-attributable ozone production, and in turn to biased estimates of aviation’s current impacts on the atmosphere and the effect of future changes in emissions. This includes soot emissions, on which contrail ice forms. These emissions are expected to reduce as biofuel usage increases, but their chemical effects are not well captured by existing models. To address this problem, we develop a Lagrangian model which explicitly models the chemical and microphysical evolution of an aircraft plume. It includes a unified tropospheric-stratospheric chemical mechanism that incorporates heterogeneous chemistry on background and aircraft-induced aerosols. Microphysical processes are also simulated, including the formation, persistence, and chemical influence of contrails. The plume model is used to quantify how the long-term (24-hour) atmospheric chemical response to an aircraft plume varies in response to different environmental conditions, and engine characteristics, and fuel properties. We find that an instant dilution model consistently overestimates ozone production compared to the plume model, up to a maximum error of ~ 200 % at cruise altitudes. Instant dilution of emissions also underestimates the fraction of remaining NOx, although the magnitude and sign of the error vary with season, altitude, and latitude. We also quantify how changes in soot emissions affect plume behavior. Our results show that a 50 % reduction in black carbon emissions, as may be possible through blending with certain biofuels, leads to contrails which evaporate ~ 9 % faster and are 14 % optically thinner. The conversion of emitted NOx to HNO3 and N2O5 falls by 65 % and 69 % respectively, resulting in chemical feedbacks which are not resolved by instant-dilution approaches. The persistent discrepancies between results from the instant dilution approach and from the aircraft plume model demonstrate that a parametrization of effective emission indices should be incorporated into 3-D atmospheric chemistry transport models.


2020 ◽  
Author(s):  
Walid Majid

<p>Dust storms on Mars are predicted to be capable of producing electrostatic fields and discharges, even larger than those in dust storms on Earth.  There are three key elements in the characterization of Martian electrostatic discharges: dependence on Martian environmental conditions, event rate, and the strength of the generated electric fields.  The detection and characterization of electric activity in Martian dust storms has important implications for habitability, and preparations for human exploration of the red planet. Furthermore, electrostatic discharges may be linked to local chemistry and plays an important role in the predicted global electrical circuit.</p><p> </p><p>Because of the continuous Mars telecommunication needs of NASA’s Mars-based assets, the Deep Space Network (DSN) is the only facility in the world that combines long term, high cadence, observing opportunities with large sensitive telescopes, making it a unique asset worldwide in searching for and characterizing electrostatic activity from large scale convective dust storms at Mars. We will describe a program at NASA’s Madrid Deep Space Communication Complex that has been carrying out a long-term monitoring campaign to search for and characterize the entire Mars hemisphere for powerful discharges during routine tracking of spacecraft at Mars on an entirely non-interfering basis. The ground-based detections will also have important implications for the design of a future instrument that could make similar in-situ measurements from orbit or from the surface of Mars, with far greater sensitivity and duty cycle, opening up a new window in our understanding of the Martian environment.</p>


Heredity ◽  
2014 ◽  
Vol 113 (3) ◽  
pp. 205-214 ◽  
Author(s):  
J C Habel ◽  
R K Mulwa ◽  
F Gassert ◽  
D Rödder ◽  
W Ulrich ◽  
...  

1984 ◽  
Vol 13 (2) ◽  
pp. 147-165 ◽  
Author(s):  
O. Sullivan ◽  
M. J. Murphy

AbstractFive principles determining movement in the housing market relating to tenure, social class and fertility status were suggested by Payne and Payne (1977) on the basis of a small-scale study in Aberdeen. Analysis of a large-scale nationally-representative survey containing full housing and maternity histories suggests that some of these principles require modification at the national level. For example, movement into and between tenures, although heavily influenced by demographic and socio-economic factors, is not as rigid as the Aberdeen study suggested. The interaction of social class, age at marriage and childbearing patterns is assessed. Finally, changes over time in these relationships and the long-term effects on final family size and tenure are discussed.


Sign in / Sign up

Export Citation Format

Share Document