SwiVR-Car-Seat

Author(s):  
Mark Colley ◽  
Pascal Jansen ◽  
Enrico Rukzio ◽  
Jan Gugenheimer

Autonomous vehicles provide new input modalities to improve interaction with in-vehicle information systems. However, due to the road and driving conditions, the user input can be perturbed, resulting in reduced interaction quality. One challenge is assessing the vehicle motion effects on the interaction without an expensive high-fidelity simulator or a real vehicle. This work presents SwiVR-Car-Seat, a low-cost swivel seat to simulate vehicle motion using rotation. In an exploratory user study (N=18), participants sat in a virtual autonomous vehicle and performed interaction tasks using the input modalities touch, gesture, gaze, or speech. Results show that the simulation increased the perceived realism of vehicle motion in virtual reality and the feeling of presence. Task performance was not influenced uniformly across modalities; gesture and gaze were negatively affected while there was little impact on touch and speech. The findings can advise automotive user interface design to mitigate the adverse effects of vehicle motion on the interaction.

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Derek Hungness ◽  
Raj Bridgelall

The adoption of connected and autonomous vehicles (CAVs) is in its infancy. Therefore, very little is known about their potential impacts on traffic. Meanwhile, researchers and market analysts predict a wide range of possibilities about their potential benefits and the timing of their deployments. Planners traditionally use various types of travel demand models to forecast future traffic conditions. However, such models do not yet integrate any expected impacts from CAV deployments. Consequently, many long-range transportation plans do not yet account for their eventual deployment. To address some of these uncertainties, this work modified an existing model for Madison, Wisconsin. To compare outcomes, the authors used identical parameter changes and simulation scenarios for a model of Gainesville, Florida. Both models show that with increasing levels of CAV deployment, both the vehicle miles traveled and the average congestion speed will increase. However, there are some important exceptions due to differences in the road network layout, geospatial features, sociodemographic factors, land-use, and access to transit.


2013 ◽  
Vol 390 ◽  
pp. 506-511
Author(s):  
Rashid Iqbal ◽  
Zhong Jian Li ◽  
Khan Badshah

Inertial measurement unit (IMU) has been widely used for autonomous vehicles navigation. The accuracy of IMU specifies the performance of the inertial navigation system (INS).The errors in the INS are mainly due to the IMU inaccuracies, initial alignment, computational errors and approximations in the system equations. These errors are further integrated over time due to the dead-reckoning nature of the INS, which leads to unacceptable results. These errors need an accurate estimation for high precision navigation. INS is integrated with Global Positioning System (GPS) to estimate the errors and enhance the navigation capability of the INS. Linearized Kalman Filter (LKF) is proposed for estimating the errors in the low cost INS using Loosely Coupled integration approach, which is opted for its simplicity and robustness. Prediction part of the LKF is used during the GPS lag for errors estimation, which is found very effective for low cost sensors. The resulting GPS-INS integration algorithm is evaluated on simulated Autonomous vehicle trajectory, generated from 6-DOF model. The integrated system limits the attitude errors less than 0.1 deg and velocity errors of the order of 0.003 meter per second. Furthermore, it provides an optimal navigation solution than can be achieved from individual systems.


Author(s):  
Simon Roberts

The CoDRIVE solution builds on R&D in the development of connected and autonomous vehicles (CAVs). The mainstay of the system is a low-cost GNSS receiver integrated with a MEMS grade IMU powered with CoDRIVE algorithms and high precision data processing software. The solution integrates RFID (radio-frequency identification) localisation information derived from tags installed in the roads around the University of Nottingham. This aids the positioning solution by correcting the long-term drift of inertial navigation technology in the absence of GNSS. The solution is informed of obscuration of GNSS through city models of skyview and elevation masks derived from 360-degree photography. The results show that predictive intelligence of the denial of GNSS and RFID aiding realises significant benefits compared to the inertial only solution. According to the validation, inertial only solutions drift over time, with an overall RMS accuracy over a 300 metres section of GNSS outage of 10 to 20 metres. After deploying the RFID tags on the road, experiments show that the RFID aided algorithm is able to constrain the maximum error to within 3.76 metres, and with 93.9% of points constrained to 2 metres accuracy overall.


In this paper, we propose a method to automatically segment the road area from the input road images to support safe driving of autonomous vehicles. In the proposed method, the semantic segmentation network (SSN) is trained by using the deep learning method and the road area is segmented by utilizing the SSN. The SSN uses the weights initialized from the VGC-16 network to create the SegNet network. In order to fast the learning time and to obtain results, the class is simplified and learned so that it can be divided into two classes as the road area and the non-road area in the trained SegNet CNN network. In order to improve the accuracy of the road segmentation result, the boundary line of the road region with the straight-line component is detected through the Hough transform and the result is shown by dividing the accurate road region by combining with the segmentation result of the SSN. The proposed method can be applied to safe driving support by autonomously driving the autonomous vehicle by automatically classifying the road area during operation and applying it to the road area departure warning system


Author(s):  
Fanta Camara ◽  
Charles Fox

AbstractUnderstanding pedestrian proxemic utility and trust will help autonomous vehicles to plan and control interactions with pedestrians more safely and efficiently. When pedestrians cross the road in front of human-driven vehicles, the two agents use knowledge of each other’s preferences to negotiate and to determine who will yield to the other. Autonomous vehicles will require similar understandings, but previous work has shown a need for them to be provided in the form of continuous proxemic utility functions, which are not available from previous proxemics studies based on Hall’s discrete zones. To fill this gap, a new Bayesian method to infer continuous pedestrian proxemic utility functions is proposed, and related to a new definition of ‘physical trust requirement’ (PTR) for road-crossing scenarios. The method is validated on simulation data then its parameters are inferred empirically from two public datasets. Results show that pedestrian proxemic utility is best described by a hyperbolic function, and that trust by the pedestrian is required in a discrete ‘trust zone’ which emerges naturally from simple physics. The PTR concept is then shown to be capable of generating and explaining the empirically observed zone sizes of Hall’s discrete theory of proxemics.


Author(s):  
Chang Wang ◽  
Xia Zhao ◽  
Rui Fu ◽  
Zhen Li

Comfort is a significant factor that affects passengers’ choice of autonomous vehicles. The comfort of an autonomous vehicle is largely determined by its control algorithm. Therefore, if the comfort of passengers can be predicted based on factors that affect comfort and the control algorithm can be adjusted, it can be beneficial to improve the comfort of autonomous vehicles. In view of this, in the present study, a human-driven experiment was carried out to simulate the typical driving state of a future autonomous vehicle. In the experiment, vehicle motion parameters and the comfort evaluation results of passengers with different physiological characteristics were collected. A single-factor analysis method and binary logistic regression analysis model were used to determine the factors that affect the evaluation results of passenger comfort. A passenger comfort prediction model was established based on the bidirectional long short-term memory network model. The results demonstrate that the accuracy of the passenger comfort prediction model reached 84%, which can provide a theoretical basis for the adjustment of the control algorithm and path trajectory of autonomous vehicles.


Author(s):  
Michal Hochman ◽  
Tal Oron-Gilad

This study explored pedestrians’ understanding of Fully Autonomous Vehicle (FAV) intention and what influences their decision to cross. Twenty participants saw fixed simulated urban road crossing scenes with a FAV present on the road. The scenes differed from one another in the FAV’s messages: the external Human-Machine Interfaces (e-HMI) background color, message type and modality, the FAV’s distance from the crossing place, and its size. Eye-tracking data and objective measurements were collected. Results revealed that pedestrians looked at the e-HMI before making their decision; however, they did not always make the decision according to the e-HMIs’ color, instructions (in advice messages), or intention (in status messages). Moreover, when they acted according to the e-HMI proposition, for certain distance conditions, they tended to hesitate before making the decision. Findings suggest that pedestrians’ decision making to cross depends on a combination of the e-HMI implementation and the car distance. Future work should explore the robustness of the findings in dynamic and more complex crossing environments.


Vehicles ◽  
2021 ◽  
Vol 3 (4) ◽  
pp. 764-777
Author(s):  
Dario Niermann ◽  
Alexander Trende ◽  
Klas Ihme ◽  
Uwe Drewitz ◽  
Cornelia Hollander ◽  
...  

The quickly rising development of autonomous vehicle technology and increase of (semi-) autonomous vehicles on the road leads to an increased demand for more sophisticated human–machine-cooperation approaches to improve trust and acceptance of these new systems. In this work, we investigate the feeling of discomfort of human passengers while driving autonomously and the automatic detection of this discomfort with several model approaches, using the combination of different data sources. Based on a driving simulator study, we analyzed the discomfort reports of 50 participants for autonomous inner city driving. We found that perceived discomfort depends on the driving scenario (with discomfort generally peaking in complex situations) and on the passenger (resulting in interindividual differences in reported discomfort extend and duration). Further, we describe three different model approaches on how to predict the passenger discomfort using data from the vehicle’s sensors as well as physiological and behavioral data from the passenger. The model’s precision varies greatly across the approaches, the best approach having a precision of up to 80%. All of our presented model approaches use combinations of linear models and are thus fast, transparent, and safe. Lastly, we analyzed these models using the SHAP method, which enables explaining the models’ discomfort predictions. These explanations are used to infer the importance of our collected features and to create a scenario-based discomfort analysis. Our work demonstrates a novel approach on passenger state modelling with simple, safe, and transparent models and with explainable model predictions, which can be used to adapt the vehicles’ actions to the needs of the passenger.


2018 ◽  
Author(s):  
Igor Radun ◽  
Jenni Radun ◽  
Jyrki Kaistinen ◽  
Jake Olivier ◽  
Göran Kecklund ◽  
...  

Unlike hypothetical trolley problem studies and an ongoing ethical dilemma with autonomous vehicles, road users can face similar ethical dilemmas in real life. Swerving a heavy vehicle towards the road-side in order to avoid a head-on crash with a much lighter passenger car is often the only option available which could save lives. However, running off-road increases the probability of a roll-over and endangers the life of the heavy vehicle driver. We have created an experimental survey study in which heavy vehicle drivers randomly received one of two possible scenarios. We found that responders were more likely to report they would ditch their vehicle in order to save the hypothetical driver who fell asleep than to save the driver who deliberately diverted their car towards the participant’s heavy vehicle. Additionally, the higher the empathy score, the higher the probability of ditching a vehicle. Implications for autonomous vehicle programming are discussed.


Author(s):  
М.А. АЛЬ-СВЕЙТИ ◽  
А.С. МУТХАННА ◽  
А.С. БОРОДИН ◽  
А.Е. КУЧЕРЯВЫЙ

Обсуждается возможность применения бортовых платформ с целью поддержки наземных сетей для использования ресурсов автономных транспортных средств как части критичных к задержкам приложений. Бортовые платформы могут повысить безопасность поездок транспортных средств, доставляя на них своевременную информацию об окружающей обстановке даже в отдаленных районах земного шара. Обсуждаются требования и потенциальные решения для поддержки инфраструктуры автономных транспортных средств как части интеллектуальной транспортной системы. Предлагается использовать вдоль дороги энергоэффективные сенсоры, которые могут объединяться друг с другом в Mesh-сети. Кроме того, предлагается новый подход к обнаружению активности биологических объектов на обочине дороги, основанный на технологиях искусственного интеллекта. The article discusses the possibility of using onboard platforms to support the terrestrial networks for autonomous vehicles resources as a part of delay-critical applications. Onboard platforms can improve the safety of vehicle rides by delivering time-critical information about the environment to the vehicles, even in remote areas of the world. In this paper, we discuss requirements and potential solutions for supporting the autonomous vehicle infrastructure, as a part of an intelligent transportation system. It is proposed to use energy-efficient sensors along the road, which can connect with each other in a Mesh network. In addition, a new approach for the detection of biological objects activity on the roadside, based on artificial intelligence technologies is suggested.


Sign in / Sign up

Export Citation Format

Share Document