scholarly journals CoDRIVE – Delivering High Accuracy, Ubiquitous Positioning Through Combined Radio Navigation and Inertial Sensing Technologies

Author(s):  
Simon Roberts

The CoDRIVE solution builds on R&D in the development of connected and autonomous vehicles (CAVs). The mainstay of the system is a low-cost GNSS receiver integrated with a MEMS grade IMU powered with CoDRIVE algorithms and high precision data processing software. The solution integrates RFID (radio-frequency identification) localisation information derived from tags installed in the roads around the University of Nottingham. This aids the positioning solution by correcting the long-term drift of inertial navigation technology in the absence of GNSS. The solution is informed of obscuration of GNSS through city models of skyview and elevation masks derived from 360-degree photography. The results show that predictive intelligence of the denial of GNSS and RFID aiding realises significant benefits compared to the inertial only solution. According to the validation, inertial only solutions drift over time, with an overall RMS accuracy over a 300 metres section of GNSS outage of 10 to 20 metres. After deploying the RFID tags on the road, experiments show that the RFID aided algorithm is able to constrain the maximum error to within 3.76 metres, and with 93.9% of points constrained to 2 metres accuracy overall.

Author(s):  
Simon Roberts ◽  
Xiaolin Meng ◽  
Chang Xu ◽  
Xinao Wang ◽  
Yijiian Cui ◽  
...  

The CoDRIVE solution builds on R&D in the development of connected and autonomous vehicles (CAVs). The mainstay of the system is a low-cost GNSS receiver integrated with a MEMS grade IMU powered with CoDRIVE algorithms and high precision data processing software. The solution integrates RFID (radio-frequency identification) localisation information derived from tags installed in the roads around the University of Nottingham. This aids the positioning solution by correcting the long-term drift of inertial navigation technology in the absence of GNSS. The solution is informed of obscuration of GNSS through city models of skyview and elevation masks derived from 360-degree photography. The results show that predictive intelligence of the denial of GNSS and RFID aiding realises significant benefits compared to the inertial only solution. According to the validation, inertial only solutions drift over time, with an overall RMS accuracy over a 300 metres section of GNSS outage of 10 to 20 metres. After deploying the RFID tags on the road, experiments show that the RFID aided algorithm is able to constrain the maximum error to within 3.76 metres, and with 93.9% of points constrained to 2 metres accuracy overall.


2020 ◽  
Vol 9 (2) ◽  
pp. 155-191
Author(s):  
Sarah Stutts ◽  
Kenneth Saintonge ◽  
Nicholas Jordan ◽  
Christina Wasson

Roadways are sociocultural spaces constructed for human travel which embody intersections of technology, transportation, and culture. In order to navigate these spaces successfully, autonomous vehicles must be able to respond to the needs and practices of those who use the road. We conducted research on how cyclists, solid waste truck drivers, and crossing guards experience the driving behaviors of other road users, to inform the development of autonomous vehicles. We found that the roadways were contested spaces, with each road user group enacting their own social constructions of the road. Furthermore, the three groups we worked with all felt marginalized by comparison with car drivers, who were ideologically and often physically dominant on the road. This article is based on research for the Nissan Research Center - Silicon Valley, which took place as part of a Design Anthropology course at the University of North Texas.


2014 ◽  
Vol 568-570 ◽  
pp. 1621-1624
Author(s):  
Shuai Ma ◽  
Xin Gao ◽  
Bing Rui Dong ◽  
Qing Qing Wang ◽  
Hai Yang Sun

With the development of the Internet, people come to use it frequently to search bus lines, such as Google maps, Baidu maps, etc. But these online maps have the information only about bus lines, stops, but the information how long bus will arrive. The paper designs a bus monitoring and searching system to forecast bus waiting time. The system sets up Radio Frequency Identification Technology (RFID) equipment at every bus stop to identify the dynamic information and exchange data with buses on the road; Rely on Global Positioning System (GPS) technology, we obtain the real-time location of the target vehicle information, and through the geographic information system (GIS), the system show the condition of the vehicle and the road network in the electronic map which helps bus companies to monitor easily. Using the Android software, designed for users, users can check waiting time any time any where. The waiting time error in the system is less than two minutes.


Author(s):  
Varun Chand ◽  
Karthikeyan J

<p class="p1">The traffic on the road was in the rise for the past few years, with more and more vehicles enter the road there was less scope of having better traffic. However, it could be maintained with the implementation of the proper system. The other major concern was on the theft of the vehicles and the accidents the drivers succumb to while in the road. This paper recommends the novel RFID-GPS mechanism based on AODV Routing Protocol algorithm in the hybrid VANET configuration that was working as a decentralized Ad hoc. The algorithm was framed in such a manner that it could be effective in maintaining traffic through communication among Vehicles and vehicles (OBUs) to the Roadside Unit (RSU). The RSUs would generate the possible route by Ad hoc On-demand Distance vector routing protocol and control the signals within the accessible limit if there were an emergency. The information about the stolen vehicles and the driver would be sent to the police station and hospital respectively that aid to track the vehicle by the Radio Frequency Identification-Global Positioning System (GPS) information and save the driver in case of an accident. The performance of the RFID-GPS mechanism based on AODV algorithm based on VANET was analyzed in NS2 and is related to the existing Zigbee. The outcomes exhibited that the proposed method was better in all performance metrics especially in throughput.</p>


2015 ◽  
Vol 2 (2) ◽  
pp. 86-96 ◽  
Author(s):  
M. Zomorrodi ◽  
N.C. Karmakar

The electromagnetic (EM) imaging technique at mm-band 60 GHz is proposed for data encoding purpose in the chipless Radio Frequency Identification (RFID) systems. The fully printable chipless RFID tag comprises tiny conductive EM polarizers to create high cross-polar radar cross-section. Synthetic aperture radar approach is applied for formation of the tag's EM-image and revealing the tag's content. The achieved high data encoding capacity of 2 bits/cm2in this technique based on a fully printable tag is very convincing for many applications. The system immunity to multipath interference, bending effect, and printing inaccuracy suggests huge potentials for low-cost item tagging. Tags are also readable through a tick paper envelop; hence secure identification is provided by the proposed technique.


Sensor Review ◽  
2017 ◽  
Vol 37 (3) ◽  
pp. 338-345 ◽  
Author(s):  
Yawei Xu ◽  
Lihong Dong ◽  
Haidou Wang ◽  
Jiannong Jing ◽  
Yongxiang Lu

Purpose Radio frequency identification tags for passive sensing have attracted wide attention in the area of Internet of Things (IoT). Among them, some tags can sense the property change of objects without an integrated sensor, which is a new trend of passive sensing based on tag. The purpose of this paper is to review recent research on passive self-sensing tags (PSSTs). Design/methodology/approach The PSSTs reported in the past decade are classified in terms of sensing mode, composition and the ways of power supply. This paper presents operation principles of PSSTs and analyzes the characteristics of them. Moreover, the paper focuses on summarizing the latest sensing parameters of PSSTs and their matching equipment. Finally, some potential applications and challenges faced by this emerging technique are discussed. Findings PSST is suitable for long-term and large-scale monitoring compared to conventional sensors because it gets rid of the limitation of battery and has relatively low cost. Also, the static information of objects stored in different PSSTs can be identified by a single reader without touch. Originality/value This paper provides a detailed and timely review of the rapidly growing research in PSST.


Author(s):  
Manolo Dulva Hina ◽  
Hongyu Guan ◽  
Assia Soukane ◽  
Amar Ramdane-Cherif

Advanced driving assistance system (ADAS) is an electronic system that helps the driver navigate roads safely. A typical ADAS, however, is suited to specific brands of vehicle and, due to proprietary restrictions, has non-extendable features. Project CASA is an alternative, low-cost generic ADAS. It is an app deployable on smartphone or tablet. The real-time data needed by the app to make sense of its environment are stored in the vehicle or on the cloud, and are accessible as web services. They are used to determine the current driving context, and, if needed, decide actions to prevent an accident or keep road navigation safe. Project CASA is an undertaking of a consortium of industrial and academic partners. A use case scenario is tested in the laboratory (virtual) and on the road (actual) to validate the appropriateness of CASA. It is a contribution to safe driving. CASA’s contribution also lies in its approach in the semantic modeling of the context of the environment, the vehicle and the driver, and on the modeling of rules for fusion of data and fission process yielding an action to be implemented. In addition, CASA proposes a secured means of transmitting data using light, via light fidelity (LiFi), itself an alternative means of wireless vehicle–smartphone communication.


Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3746 ◽  
Author(s):  
Antonio Lazaro ◽  
Ramon Villarino ◽  
David Girbau

In this article, an overview of recent advances in the field of battery-less near-field communication (NFC) sensors is provided, along with a brief comparison of other short-range radio-frequency identification (RFID) technologies. After reviewing power transfer using NFC, recommendations are made for the practical design of NFC-based tags and NFC readers. A list of commercial NFC integrated circuits with energy-harvesting capabilities is also provided. Finally, a survey of the state of the art in NFC-based sensors is presented, which demonstrates that a wide range of sensors (both chemical and physical) can be used with this technology. Particular interest arose in wearable sensors and cold-chain traceability applications. The availability of low-cost devices and the incorporation of NFC readers into most current mobile phones make NFC technology key to the development of green Internet of Things (IoT) applications.


Sign in / Sign up

Export Citation Format

Share Document