Measuring and Modeling Visual Appearance

2020 ◽  
Vol 6 (1) ◽  
pp. 519-537
Author(s):  
Laurence T. Maloney ◽  
Kenneth Knoblauch

In studying visual perception, we seek to develop models of processing that accurately predict perceptual judgments. Much of this work is focused on judgments of discrimination, and there is a large literature concerning models of visual discrimination. There are, however, non-threshold visual judgments, such as judgments of the magnitude of differences between visual stimuli, that provide a means to bridge the gap between threshold and appearance. We describe two such models of suprathreshold judgments, maximum likelihood difference scaling and maximum likelihood conjoint measurement, and review recent literature that has exploited them.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Fazilet Zeynep Yildirim ◽  
Daniel R. Coates ◽  
Bilge Sayim

AbstractThe perception of a target depends on other stimuli surrounding it in time and space. This contextual modulation is ubiquitous in visual perception, and is usually quantified by measuring performance on sets of highly similar stimuli. Implicit or explicit comparisons among the stimuli may, however, inadvertently bias responses and conceal strong variability of target appearance. Here, we investigated the influence of contextual stimuli on the perception of a repeating pattern (a line triplet), presented in the visual periphery. In the neutral condition, the triplet was presented a single time to capture its minimally biased perception. In the similar and dissimilar conditions, it was presented within stimulus sets composed of lines similar to the triplet, and distinct shapes, respectively. The majority of observers reported perceiving a line pair in the neutral and dissimilar conditions, revealing ‘redundancy masking’, the reduction of the perceived number of repeating items. In the similar condition, by contrast, the number of lines was overestimated. Our results show that the similar context did not reveal redundancy masking which was only observed in the neutral and dissimilar context. We suggest that the influence of contextual stimuli has inadvertently concealed this crucial aspect of peripheral appearance.


Author(s):  
Jordan Sasser ◽  
Fernando Montalvo ◽  
Rhyse Bendell ◽  
P. A. Hancock ◽  
Daniel S. McConnell

Prior research has indicated that perception of acceleration may be a direct process. This direct process may be conceptually linked to the ecological approach to visual perception and a further extension of direct social perception. The present study examines the effects of perception of acceleration in virtual reality on participants’ perceived attributes (perceived intelligence and animacy) of a virtual human-like robot agent and perceived agent competitive/cooperativeness. Perceptual judgments were collected after experiencing one of the five different conditions dependent on the participant’s acceleration: mirrored acceleration, faster acceleration, slowed acceleration, varied acceleration resulting in a win, and varied acceleration resulting in a loss. Participants experienced each condition twice in a counterbalanced fashion. The focus of the experiment was to determine whether different accelerations influenced perceptual judgments of the observers. Results suggest that faster acceleration was perceived as more competitive and slower acceleration was reported as low in animacy and perceived intelligence.


1992 ◽  
Vol 67 (6) ◽  
pp. 1447-1463 ◽  
Author(s):  
K. Nakamura ◽  
A. Mikami ◽  
K. Kubota

1. The activity of single neurons was recorded extracellularly from the monkey amygdala while monkeys performed a visual discrimination task. The monkeys were trained to remember a visual stimulus during a delay period (0.5-3.0 s), to discriminate a new visual stimulus from the stimulus, and to release a lever when the new stimulus was presented. Colored photographs (human faces, monkeys, foods, and nonfood objects) or computer-generated two-dimensional shapes (a yellow triangle, a red circle, etc.) were used as visual stimuli. 2. The activity of 160 task-related neurons was studied. Of these, 144 (90%) responded to visual stimuli, 13 (8%) showed firing during the delay period, and 9 (6%) responded to the reward. 3. Task-related neurons were categorized according to the way in which various stimuli activated the neurons. First, to evaluate the proportion of all tested stimuli that elicited changes in activity of a neuron, selectivity index 1 (SI1) was employed. Second, to evaluate the ability of a neuron to discriminate a stimulus from another stimulus, SI2 was employed. On the basis of the calculated values of SI1 and SI2, neurons were classified as selective and nonselective. Most visual neurons were categorized as selective (131/144), and a few were characterized as nonselective (13/144). Neurons active during the delay period were also categorized as selective visual and delay neurons (6/13) and as nonselective delay neurons (7/13). 4. Responses of selective visual neurons had various temporal and stimulus-selective properties. Latencies ranged widely from 60 to 300 ms. Response durations also ranged widely from 20 to 870 ms. When the natures of the various effective stimuli were studied for each neuron, one-fourth of the responses of these neurons were considered to reflect some categorical aspect of the stimuli, such as human, monkey, food, or nonfood object. Furthermore, the responses of some neurons apparently reflected a certain behavioral significance of the stimuli that was separate from the task, such as the face of a particular person, smiling human faces, etc. 5. Nonselective visual neurons responded to a visual stimulus, regardless of its nature. They also responded in the absence of a visual stimulus when the monkey anticipated the appearance of the next stimulus. 6. Selective visual and delay neurons fired in response to particular stimuli and throughout the subsequent delay periods. Nonselective delay neurons increased their discharge rates gradually during the delay period, and the discharge rate decreased after the next stimulus was presented. 7. Task-related neurons were identified in six histologically distinct nuclei of the amygdala.(ABSTRACT TRUNCATED AT 400 WORDS)


1954 ◽  
Vol 100 (419) ◽  
pp. 462-477 ◽  
Author(s):  
K. R. L. Hall ◽  
E. Stride

A number of studies on reaction time (R.T.) latency to visual and auditory stimuli in psychotic patients has been reported since the first investigations on the personal equation were carried out. The general trends from the work up to 1943 are well summarized by Hunt (1944), while Granger's (1953) review of “Personality and visual perception” contains a summary of the studies on R.T. to visual stimuli.


2021 ◽  
Author(s):  
Constantinos Eleftheriou

The goal of this protocol is to assess visuomotor learning and motor flexibility in freely-moving mice, using the Visiomode touchscreen platform. Water-restricted mice first learn to associate touching a visual stimulus on the screen with a water reward. They then learn to discriminate between different visual stimuli on the touchscreen by nose-poking, before asked to switch their motor strategy to forelimb reaching. Version 1 of the protocol uses traditional water deprivation and water rewards in the task as a means of motivating mice to perform the task. Version 2 of the protocol uses Citric Acid for water restriction and sucrose as rewards in the task instead of the traditional water deprivation protocol.


2019 ◽  
Vol 99 (5) ◽  
pp. 1165-1169 ◽  
Author(s):  
Monserrat Suárez-Rodríguez ◽  
Karla Kruesi ◽  
Guillermina Alcaraz

AbstractHermit crabs use different senses to search for and find shells. In most cases, chemical cues have been proven to act as a very efficient way of finding new shells. However, in intertidal environments, the water transports chemical signals in different directions and velocities may make it harder to track the source of the cue, so visual stimuli may be a more precise source of information. The hermit crab Calcinus californiensis shows a preference for the biconical shells of Stramonita biserialis, although the crabs may also use the less preferred shell of Nerita scabricosta. We were interested in exploring if C. californiensis identify the preferred shell species through vision in the absence of chemical stimuli. We presented both shell species to hermit crabs in two different sets of experiments. In one experiment, we presented to the hermit crabs real shells of N. scabricosta and S. biserialis, and in another, we presented only the silhouettes of the same shells. The hermit crabs discriminated between the real shells and the silhouettes of N. scabricosta and S. biserialis. Females attended with higher frequency to real shells and silhouettes of S. biserialis; while males attended more to shells and silhouettes of N. scabricosta. Although, larger males biased their attendance toward shells of S. biserialis. Our results show that visual perception may be more important than we have thought in intertidal animals.


1971 ◽  
Vol 33 (1) ◽  
pp. 195-200 ◽  
Author(s):  
Evans Mandes ◽  
Patricia Randle Allen ◽  
Charles W. Swisher

An experiment was conducted to compare deaf children and normally hearing children on a visual perception task. The visual stimuli were 32 cards, each with a binary pattern of eight circles arranged horizontally or vertically. One circle on the right or top and one circle on the left or bottom of each card were blackened to form the binary patterns, one on each side of fixation. The stimuli were presented tachistoscopically at 1/10 sec. and 1/25 sec. S responded by pointing to the positions he saw blackened on a response card to depict 8 blank circles. It was found that deaf children did as well as normally hearing children and that both groups made fewer errors on the left and top positions of the stimulus dimensions. The data are interpreted as supporting a mediational approach in perceptual development among deaf children.


2021 ◽  
Vol 2 (3) ◽  
pp. 335-346
Author(s):  
Tamara G. Kuznetsova ◽  
Inna Yu. Golubeva

Author(s):  
R. V. Zhelankin ◽  
◽  
I. G. Skotnikova ◽  
L. A. Selivanova ◽  
◽  
...  

Visual abilities to discriminate between spatial and color stimuli was studied, which is ecologically significant for reptiles. Namely: the behavior of slow-warm lizards in a Tshaped maze was investigated in visual discrimination between red and green color tones and sizes of geometric figures of a round shape. The main behavioral characteristics of decisionmaking were analyzed when choosing between possible options: a percentage of erroneous choices, time of choice and a number of lizards’ turns towards alternative ways in the maze, leading to comparable stimuli, before choosing one of them. In case of color discrimination, all the three named behavior characteristics were minimal, while in case of the figures sizes discrimination these values were higher. Thus, discrimination of red and green colors was more successful and less difficult than discrimination of round-shaped geometric figures sizes in the lizards.


Sign in / Sign up

Export Citation Format

Share Document