Misfit Dislocation Nucleation Study in p/p[sup +] Silicon

2001 ◽  
Vol 148 (7) ◽  
pp. G379 ◽  
Author(s):  
Petra Feichtinger ◽  
Mark S. Goorsky ◽  
Dwain Oster ◽  
Tom D’Silva ◽  
Jim Moreland
1998 ◽  
Vol 73 (8) ◽  
pp. 1074-1076 ◽  
Author(s):  
Achim Trampert ◽  
Klaus H. Ploog ◽  
Eric Tournié

1990 ◽  
Vol 198 ◽  
Author(s):  
D.C. Houghton ◽  
N.L. Rowell

ABSTRACTThe thermal constraints for device processing imposed by strain relaxation have been determined for a wide range of Si-Ge strained heterostructures. Misfit dislocation densities and glide velocities in uncapped Sil-xGex alloy layers, Sil-xGex single and multiple quantum wells have been measured using defect etching and TEM for a range of anneal temperatures (450°C-1000°C) and anneal times (5s-2000s). The decay of an intense photoluminescence peak (∼ 10% internal quantum efficiency ) from buried Si1-xGex strained layers has been correlated with the generation of misfit dislocations in adjacent Sil-xGex /Si interfaces. The misfit dislocation nucleation rate and glide velocity for all geometries and alloy compositions (0<x<0.25) were found to be thermally activated processes with activation energies of (2.5±0.2)eV and (2.3-0.65x)eV, respectively. The time-temperature regime available for thermal processing is mapped out as a function of dislocation density using a new kinetic model.


1995 ◽  
Vol 399 ◽  
Author(s):  
D.D. Perovic ◽  
B. Bahierathan ◽  
D.C. Houghton ◽  
H. Lafontaine ◽  
J.-M. Baribeau

ABSTRACTTwo competing strain relaxation mechanisms, namely misfit dislocation generation and surface roughening, have been extensively studied using the GexSi1-x/Si (x< 0.5) system as an example. A predictive model has been developed which accurately describes the nature of misfit dislocation nucleation and growth under non-equilibrium conditions. Using optical and electron microscopy, coupled with a refined theoretical description of dislocation nucleation, it is shown that strain relieving dislocations are readily generated at low misfits with a characteristic activation energy barrier regardless of the growth technique employed (i.e. MBE, RTCVD and UHVCVD). Secondly we have studied the alternative elastic strain relaxation mechanism involving surface undulation; x-ray diffraction, electron and atomic force microscopy have been used to characterize GexSi1-x/Si (x<0.5) structures grown by UHVCVD and MBE at relatively higher temperatures. A theoretical model has been used to model the critical thickness for surface wave generation. The conditions governing the interplay between dislocation formation and surface buckling are described in terms of a "morphological instability diagram".


1991 ◽  
Vol 238 ◽  
Author(s):  
C. W. Liu ◽  
J. C. Sturm ◽  
P. V. Schwartz ◽  
E. A. Fitzgerald

ABSTRACTA quantitative model of the effect of the selective growth on dislocation density has been developed and compared to experiments. It is concluded that the dominant dislocation nucleation source in the selective areas occurs at the specific heterogeneous sites at edges of the selective areas. This edge nucleation can be controlled by adjusting the orientation of the sidewalls.


Sign in / Sign up

Export Citation Format

Share Document