scholarly journals Coral-Like LaNixFe1-xO3 Perovskite Catalyst for High-Performance Oxygen Evolution Reaction

Author(s):  
Qing Wang ◽  
Haoye Wang ◽  
Songya Qi ◽  
Zilong Su ◽  
Kaixuan Chen ◽  
...  

Abstract With the rare earth element La was selected as the A site and transition metal ions (Ni, Fe) as the B site of perovskite-type oxides with general formula ABO3, a series of LaNixFe1-xO3 (x=0, 0.3, 0.5, 0.7, 0.8, 1.0) perovskite catalysts were prepared by sol-gel method to investigate their catalytic performance for oxygen evolution reaction (OER). The catalyst activity was screened by linear scanning cyclic voltammetry (LSV), Tafel curves, and electrochemical impedance spectroscopy (EIS). A group of electrochemical tests for LaNixFe1-xO3 with various Ni/Fe ratios indicate that LaNi0.8Fe0.2O3 catalyst exhibits excellent electrochemical activity, with a resistance to charge-transfer reaction (Rct) of 5.942 Ω cm-2, overpotential of 391 mV, a Tafel slope of 102.8 mV dec-1, and electrochemical double-layer capacitance (Cdl) of 12.31 mF cm-1. The stability test after 15000 s proves that the optimized LaNi0.8Fe0.2O3 has better stability compared to pristine LaFeO3 and LaNiO3. In addition, LaNi0.8Fe0.2O3 also exhibits the largest electrochemical active area (ECSA=307.75 cm2) and exchange current density (jo=1.08 mA cm-2). This work provides reference for perovskite in improving oxygen evolution performance.

2017 ◽  
Vol 4 (7) ◽  
pp. 1173-1181 ◽  
Author(s):  
Haidong Yang ◽  
Sha Luo ◽  
Yun Bao ◽  
Yutong Luo ◽  
Jun Jin ◽  
...  

The ultrathin Ni70Fe30LDH nanosheets were successfullyin situgrown on anodic polarized copper foil, denoted as u-Ni70Fe30LDHs/a-CF. Benefiting from the ultrathin nanosheet structure, the catalyst exhibits remarkable catalytic performance for OER in 1 M KOH solution.


2020 ◽  
Vol 21 (11) ◽  
pp. 3785 ◽  
Author(s):  
Areej A. Eskandrani ◽  
Shimaa M. Ali ◽  
Hibah M. Al-Otaibi

The catalytic activity of Sr2PdO3, prepared through the sol-gel citrate-combustion method for the oxygen evolution reaction (OER) in a 0.1 M HClO4 solution, was investigated. The electrocatalytic activity of Sr2PdO3 toward OER was assessed via the anodic potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The glassy carbon modified Sr2PdO3 (GC/Sr2PdO3) electrode exhibited a higher electrocatalytic activity, by about 50 times, in comparison to the unmodified electrode. The order of the reaction was close to unity, which indicates that the adsorption of the hydroxyl groups is a fast step. The calculated activation energy was 21.6 kJ.mol−1, which can be considered a low value in evaluation with those of the reported OER electrocatalysts. The Sr2PdO3 perovskite portrayed a high catalyst stability without any probability of catalyst poisoning. These results encourage the use of Sr2PdO3 as a candidate electrocatalyst for water splitting reactions.


2007 ◽  
Vol 61 (2) ◽  
Author(s):  
S. Palmas ◽  
F. Ferrara ◽  
A. Pisu ◽  
C. Cannas

AbstractThe electrochemical performances of Co3O4 nanopowders, obtained by the sol-gel method, were investigated and compared with those of commercial Co3O4 powders, for oxygen evolution reaction in alkaline solution. The active oxide powder was mixed with teflon and assembled on Ti substrate to form thin catalyst film. Cyclic voltammetry, polarization curves, and electrochemical impedance spectroscopy were used to assess the mechanism of oxygen evolution reaction, chemical structure, and morphology of the catalyst.


2021 ◽  
Vol 59 (7) ◽  
pp. 491-498
Author(s):  
Jung-Il Lee ◽  
Hui Ra Chae ◽  
Jeong Ho Ryu

Transition-metal-based layered double hydroxides (LDHs) have attracted substantial attention as highly efficient oxygen evolution reaction (OER) catalysts because they are earth-abundant, low-cost, and environmentally friendly materials with favorable adsorption/desorption energies for intermittent reactants. However, the application of these LDHs as high-performance electrocatalysts is often hindered by their relatively sluggish electronic transport kinetics resulting from their intrinsically low conductivity. Here, we report the effects of incorporating a metalloid into transition metal LDHs on their electrocatalytic activity. In this study, Te-incorporated NiCo LDH (χTe-NiCo LDH) was grown on a three-dimensional porous nickel foam (NF) using a facile solvothermal method with χ = 0.2, 0.4, 0.6 and 0.8. The crystal structure and surface nanostructure were investigated by X-ray diffraction and field-emission scanning electron microscopy. A homogeneous nanosheet structure on the NF was clearly observed for the NiCo LDH and χTe-NiCo (χ = 0.2, 0.4, 0.6) LDHs. However, irregular and collapsed nanostructures were found on the surface of the NF when the Te precursor ratio (χ) exceeded 0.6. The electrocatalytic OER properties were analyzed by linear sweep voltammetry and electrochemical impedance spectroscopy. The amount of Te used in the electrocatalytic reaction was found to play a crucial role in improving the catalytic activity. The optimum Te amount (χ) introduced into the NiCo LDH is discussed with respect to the OER performance.


2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Yao Xiao ◽  
Yibo Wang ◽  
Meiling Xiao ◽  
Changpeng Liu ◽  
Shuai Hou ◽  
...  

AbstractEngineering an electrocatalytic anode material to boost reaction kinetics is highly desirable for the anodic oxygen evolution reaction (OER), which is the major obstacle for high efficiency water electrolysis. Here, we present a novel kind of Zn-doped Co3O4 hollow dodecahedral electrocatalyst. Abundant oxygen vacancy defects are introduced due to the incorporation of Zn2+, which is beneficial for OH− adsorption and the charge transfer reaction during the OER process. Moreover, the increase in surface area caused by the advanced structure of the hollow porous dodecahedra facilitates mass transport by increasing the surface area. The novel strategy proposed in this study provides an efficient way to design high-performance electrocatalysts for water electrolysis.


2021 ◽  
Author(s):  
Ning Liu ◽  
Qiaoqiao Zhang ◽  
Jingqi Guan

Seeking for low-cost and high-performance electrocatalysts for oxygen evolution reaction (OER) has drawn enormous research interest in the last few years. Reported herein is the topotactic construction of a binuclear...


Author(s):  
Shuya Zhao ◽  
Yurui Xue ◽  
Zhongqiang Wang ◽  
Zhiqiang Zheng ◽  
Xiaoyu Luan ◽  
...  

Developing highly active, stable and low-cost electrocatalysts capable of an efficient oxygen evolution reaction (OER) is urgent and challenging.


2021 ◽  
Author(s):  
Xinxin Sang ◽  
Hengbo Wu ◽  
Nan Zang ◽  
Huilian Che ◽  
Dongyin Liu ◽  
...  

Co2P hybridized with multi-doped carbon nanoleaves is obtained via direct carbonization of ZIF-L/PEI/PA and show good electro-catalytic performance in OER.


Author(s):  
Yoo Sei Park ◽  
Jooyoung Lee ◽  
Myeong-Je Jang ◽  
Juchan Yang ◽  
Jae Hoon Jeong ◽  
...  

Seawater electrolysis is a promising technology for the production of hydrogen energy and seawater desalination. To produce hydrogen energy through seawater electrolysis, highly active electrocatalysts for the oxygen evolution reaction...


Author(s):  
Davood Taherinia ◽  
Seyyed Heydar Moravvej ◽  
Mohammad Moazzeni ◽  
Elham Akbarzadeh

The development of efficient and cost-effective catalysts for the oxygen evolution reaction is highly desirable for applications that are based on sustainable and clean technologies. In this study, we report...


Sign in / Sign up

Export Citation Format

Share Document