Oxygen evolution on Ti/Co3O4-coated electrodes in alkaline solution

2007 ◽  
Vol 61 (2) ◽  
Author(s):  
S. Palmas ◽  
F. Ferrara ◽  
A. Pisu ◽  
C. Cannas

AbstractThe electrochemical performances of Co3O4 nanopowders, obtained by the sol-gel method, were investigated and compared with those of commercial Co3O4 powders, for oxygen evolution reaction in alkaline solution. The active oxide powder was mixed with teflon and assembled on Ti substrate to form thin catalyst film. Cyclic voltammetry, polarization curves, and electrochemical impedance spectroscopy were used to assess the mechanism of oxygen evolution reaction, chemical structure, and morphology of the catalyst.

2020 ◽  
Vol 21 (11) ◽  
pp. 3785 ◽  
Author(s):  
Areej A. Eskandrani ◽  
Shimaa M. Ali ◽  
Hibah M. Al-Otaibi

The catalytic activity of Sr2PdO3, prepared through the sol-gel citrate-combustion method for the oxygen evolution reaction (OER) in a 0.1 M HClO4 solution, was investigated. The electrocatalytic activity of Sr2PdO3 toward OER was assessed via the anodic potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The glassy carbon modified Sr2PdO3 (GC/Sr2PdO3) electrode exhibited a higher electrocatalytic activity, by about 50 times, in comparison to the unmodified electrode. The order of the reaction was close to unity, which indicates that the adsorption of the hydroxyl groups is a fast step. The calculated activation energy was 21.6 kJ.mol−1, which can be considered a low value in evaluation with those of the reported OER electrocatalysts. The Sr2PdO3 perovskite portrayed a high catalyst stability without any probability of catalyst poisoning. These results encourage the use of Sr2PdO3 as a candidate electrocatalyst for water splitting reactions.


Author(s):  
Qing Wang ◽  
Haoye Wang ◽  
Songya Qi ◽  
Zilong Su ◽  
Kaixuan Chen ◽  
...  

Abstract With the rare earth element La was selected as the A site and transition metal ions (Ni, Fe) as the B site of perovskite-type oxides with general formula ABO3, a series of LaNixFe1-xO3 (x=0, 0.3, 0.5, 0.7, 0.8, 1.0) perovskite catalysts were prepared by sol-gel method to investigate their catalytic performance for oxygen evolution reaction (OER). The catalyst activity was screened by linear scanning cyclic voltammetry (LSV), Tafel curves, and electrochemical impedance spectroscopy (EIS). A group of electrochemical tests for LaNixFe1-xO3 with various Ni/Fe ratios indicate that LaNi0.8Fe0.2O3 catalyst exhibits excellent electrochemical activity, with a resistance to charge-transfer reaction (Rct) of 5.942 Ω cm-2, overpotential of 391 mV, a Tafel slope of 102.8 mV dec-1, and electrochemical double-layer capacitance (Cdl) of 12.31 mF cm-1. The stability test after 15000 s proves that the optimized LaNi0.8Fe0.2O3 has better stability compared to pristine LaFeO3 and LaNiO3. In addition, LaNi0.8Fe0.2O3 also exhibits the largest electrochemical active area (ECSA=307.75 cm2) and exchange current density (jo=1.08 mA cm-2). This work provides reference for perovskite in improving oxygen evolution performance.


2013 ◽  
Vol 537 ◽  
pp. 174-178
Author(s):  
Ji Chao Wang ◽  
Guang Ming Wu ◽  
Guo Hua Gao ◽  
Xiao Wei Zhou

Vanadium oxide films were prepared via the sol–gel process and dip coating method, using V2O5as raw materials and H2O2(volume fraction 30) as the solvent. Mn and Ni ions were added to vanadium oxide sol to prepare doping vanadium oxide films. The films were characterized by atomic force microscopy, FT-IR, X-ray diffraction and electrochemical techniques. The add-on of Metal ions will not affect the morphology of the vanadium oxide films, but change the valence of vanadium ion and vanadium oxide crystal phase. Furthermore, cyclic voltammetry curves show that metal ions doping vanadium oxide films exhibit reversible electrochemical reaction. But electrochemical impedance spectroscopy indicates pure vanadium oxide film has a better diffusion rate.


2019 ◽  
Vol 29 (2) ◽  
pp. 92-96 ◽  
Author(s):  
Yoo Sei Park ◽  
Changwook Jung ◽  
Chiho Kim ◽  
Taewoo Koo ◽  
Changgyu Seok ◽  
...  

2021 ◽  
Vol 21 (4) ◽  
pp. 2660-2667
Author(s):  
Abdul Qayoom Mugheri ◽  
Aneela Tahira ◽  
Umair Aftab ◽  
Adeel Liaquat Bhatti ◽  
Ramesh Lal ◽  
...  

Cobalt oxide has been widely investigated among potential transition metal oxides for the electrochemical energy conversion, storage, and water splitting. However, they have inherently low electronic conductivity and high corrosive nature in alkaline media. Herein, we propose a promising and facile approach to improve the conductivity and charge transport of cobalt oxide Co3O4 through chemical coupling with well-dispersed multiwall carbon nanotubes (MWCNTs) during hydrothermal treatment. The morphology of prepared composite material consisting of nanosheets which are anchored on the MWCNTs as confirmed by scanning electron microscopy (SEM). A cubic crystalline system is exhibited by the cobalt oxide as confirmed by the X-ray diffraction study. The Co, O, and C are the only elements present in the composite material. FTIR study has indicated the successful coupling of cobalt oxide with MWCNTs. The chemically coupled cobalt oxide onto the surface of MWCNTs composite is found highly active towards oxygen evolution reaction (OER) with a low onset potential 1.44 V versus RHE, low overpotential 262 mV at 10 mAcm-2 and small Tafel slope 81 mV dec-1. For continuous operation of 40 hours during durability test, no decay in activity was recorded. Electrochemical impedance study further revealed a low charge transfer resistance of 70.64 Ohms for the composite material during the electrochemical reaction and which strongly favored OER kinetics. This work provides a simple, low cost, and smartly designing electrocatalysts via hydrothermal reaction for the catalysis and energy storage applications.


2019 ◽  
Vol 58 (25) ◽  
pp. 8330-8335 ◽  
Author(s):  
Ritambhara Gond ◽  
Dheeraj Kumar Singh ◽  
Muthusamy Eswaramoorthy ◽  
Prabeer Barpanda

Nanoscale ◽  
2019 ◽  
Vol 11 (22) ◽  
pp. 10595-10602 ◽  
Author(s):  
Yu-Feng Qi ◽  
Qian Wang ◽  
Xiu-Guang Wang ◽  
Zheng-Yu Liu ◽  
Xiao-Jun Zhao ◽  
...  

A Co-doped FeNi carbonate hydroxide nanosheet array supported on nickel foam served as an efficient oxygen evolution electrocatalyst with a high activity and excellent stability.


Sign in / Sign up

Export Citation Format

Share Document