scholarly journals The Spectroscopic and Antimicrobial Yield of Sol-Gel Derived Zinc Copper Silicate/E102 Nanoclusters

Author(s):  
A. M. Mansour ◽  
bahaa Hemdan ◽  
Ali B Abou Hammad ◽  
hisham saleh ◽  
amany M elnahrawy

Abstract The structural and optical properties of 30 ZnO: 50 SiO2: (20-x) CuO (ZSC) loaded with E102 (tartrazine dye) (where x=0.02, 0.05, 0.07 wt.%) nanoclusters have been explored. These nanoclusters were synthesized by a sol-gel route followed by a very controlled crystallization process at 500oC. The phase formation, structural modification, and particle distribution behavior of these nanoclusters have been studied using XRD and TEM analysis to monitor the domestic environment for ZCS-E102. The optical transmission and reflection properties of nanoclusters in the UV-Vis-NIR range were studied for the present nanoclusters from which the optical absorption was calculated. Tauc method is employed to estimate the type and value of energy needed to gap transition from absorption data. The direct and indirect gap shows decreased energy need for its transition by E102 concentration increase. The antimicrobial potentials of four synthesized nanoclusters were performed against some pathogenic microbes. The toxicity performance of all studied nanoclusters is measured. Results revealed that ZSC-0.07E102 is showed an effective antimicrobial action against four tested pathogenic microbes in terms of excellent inhibitory effect and biocompatibility show noticeable potential in the antimicrobial application. Therefore, this proficient nanomaterial is a promising choice for biomedical purposes.

2020 ◽  
Vol 5 (3) ◽  
pp. 236-251
Author(s):  
Eshwara I. Naik ◽  
Halehatty S.B. Naik ◽  
Ranganaik Viswanath

Background: Various interesting consequences are reported on structural, optical, and photoluminescence properties of Zn1-xSmxO (x=0, 0.01, 0.03 and 0.05) nanoparticles synthesized by sol-gel auto-combustion route. Objective: This study aimed to examine the effects of Sm3+-doping on structural and photoluminescence properties of ZnO nanoparticles. Methods: Zn1-xSmxO (x=0, 0.01, 0.03 and 0.05) nanoparticles were synthesized by sol-gel auto combustion method. Results: XRD patterns confirmed the Sm3+ ion substitution through the undisturbed wurtzite structure of ZnO. The crystallite size was decreased from 24.33 to 18.46 nm with Sm3+ doping. The hexagonal and spherical morphology of nanoparticles was confirmed by TEM analysis. UV-visible studies showed that Sm3+ ion doping improved the visible light absorption capacity of Sm3+ iondoped ZnO nanoparticles. PL spectra of Sm3+ ion-doped ZnO nanoparticles showed an orange-red emission peak corresponding to 4G5/2→6HJ (J=7/2, 9/2 and 11/2) transition of Sm3+ ion. Sm3+ ion-induced PL was proposed with a substantial increase in PL intensity with a blue shift in peak upon Sm3+ content increase. Conclusion: Absorption peaks associated with doped ZnO nanoparticles were moved to a longer wavelength side compared to ZnO, with bandgap declines when Sm3+ ions concentration was increased. PL studies concluded that ZnO emission properties could be tuned in the red region along with the existence of blue peaks upon Sm3+ ion doping, which also results in enhancing the PL intensity. These latest properties related to Sm3+ ion-doped nanoparticles prepared by a cost-efficient process appear to be interesting in the field of optoelectronic applications, which makes them a prominent candidate in the form of red light-emitting diodes.


2009 ◽  
Vol 4 (4) ◽  
pp. 383-389 ◽  
Author(s):  
Jijun Wang ◽  
Yinjie Sun ◽  
Yun Huang ◽  
Erqiang Chen ◽  
Huihui Li ◽  
...  

2015 ◽  
Vol 645 ◽  
pp. 529-534 ◽  
Author(s):  
Libing Duan ◽  
Xiaoru Zhao ◽  
Yajun Wang ◽  
Hao Shen ◽  
Wangchang Geng ◽  
...  

2014 ◽  
Vol 318 ◽  
pp. 309-313 ◽  
Author(s):  
Ebru Gungor ◽  
Tayyar Gungor ◽  
Deniz Caliskan ◽  
Abdullah Ceylan ◽  
Ekmel Ozbay

2015 ◽  
Vol 33 (4) ◽  
pp. 714-718 ◽  
Author(s):  
Neeraj K. Mishra ◽  
Chaitnaya Kumar ◽  
Amit Kumar ◽  
Manish Kumar ◽  
Pratibha Chaudhary ◽  
...  

AbstractA nanocomposite of 0.5SnO2–0.5Al2O3 has been synthesized using a sol-gel route. Structural and optical properties of the nanocomposite have been discussed in detail. Powder X-ray diffraction and scanning electron microscopy with energy-dispersive X-ray diffraction spectroscopy confirm the phase purity and the particle size of the 0.5SnO2–0.5Al2O3 nanocomposite (13 to 15 nm). The scanning electron microscopy also confirms the porosity in the sample, useful in sensing applications. The FT-IR analysis confirms the presence of physical interaction between SnO2 and Al2O3 due to the slight shifting and broadening of characteristic bands. The UV-Vis analysis confirms the semiconducting nature because of direct transition of electrons into the 0.5SnO2–0.5Al2O3 nanocomposites.


2014 ◽  
Vol 989-994 ◽  
pp. 656-659
Author(s):  
Ping Cao ◽  
Yue Bai

Al co-doped ZnCoO thin film has been prepared by a sol-gel method. The structural and optical properties of the sample were investigated. X-ray diffraction and UV absorption spectroscopy analyses indicate that Al3+ and Co2+ substitute for Zn2+ without changing the wurtzite structure. With the Al doping, the visible emission increased and the UV emission decreased, which is attributed to the increase of O vacancies and Zn interstitials.


2014 ◽  
Vol 514 ◽  
pp. 012008 ◽  
Author(s):  
T Ivanova ◽  
A Harizanova ◽  
T Koutzarova ◽  
B Vertruyen

Sign in / Sign up

Export Citation Format

Share Document