Crosstalk Effect in Electrochemical Impedance of Micro-Patterned Pt Electrodes on YSZ Thin Film

Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1433
Author(s):  
Esther Tanumihardja ◽  
Douwe S. de Bruijn ◽  
Rolf H. Slaats ◽  
Wouter Olthuis ◽  
Albert van den Berg

A ruthenium oxide (RuOx) electrode was used to monitor contractile events of human pluripotent stem cells-derived cardiomyocytes (hPSC-CMs) through electrical impedance spectroscopy (EIS). Using RuOx electrodes presents an advantage over standard thin film Pt electrodes because the RuOx electrodes can also be used as electrochemical sensor for pH, O2, and nitric oxide, providing multisensory functionality with the same electrode. First, the EIS signal was validated in an optically transparent well-plate setup using Pt wire electrodes. This way, visual data could be recorded simultaneously. Frequency analyses of both EIS and the visual data revealed almost identical frequency components. This suggests both the EIS and visual data captured the similar events of the beating of (an area of) hPSC-CMs. Similar EIS measurement was then performed using the RuOx electrode, which yielded comparable signal and periodicity. This mode of operation adds to the versatility of the RuOx electrode’s use in in vitro studies.


2008 ◽  
Vol 17 (7) ◽  
pp. 527-531 ◽  
Author(s):  
Erica C. Teixeira ◽  
Jeffrey R. Piascik ◽  
Brian R. Stoner ◽  
Jeffrey Y. Thompson

2001 ◽  
Vol 21 (10-11) ◽  
pp. 1861-1865 ◽  
Author(s):  
Darja Kek ◽  
Peter Panjan ◽  
Elke Wanzenberg ◽  
Janez Jamnik
Keyword(s):  

Author(s):  
Jianwen Liu ◽  
Wangping Wu ◽  
Xiang Wang

Developing novel hydrogen evolution reaction (HER) catalysts with high activity, high stability and low cost is of great importance for the applications of hydrogen energy. In this work, iridium-nickel (Ir-Ni) thin films were electrodeposited on a copper foam as electrocatalyst for HER, and electrodeposition mechanism of Ir-Ni film was studied. The morphology and chemical composition of thin films were determined by scanning electron microscopy and energy-dispersive spectroscopy, respectively. The electrocatalytic performances of the films were estimated by linear sweep voltammograms, electrochemical impedance spectroscopy and cyclic voltammetry. The results show that Ir-Ni thin films were attached to the substrate of porous structure and hollow topography. The deposition of Ni was preferable in the electrolyte without the addition of additives, and Ir-Ni thin film was alloyed, resulting in high deposition rate for Ir42Ni58 thin film, and subsequently an increase of Ir content in the thin films of Ir80Ni20 and Ir88Ni12. Ir-Ni thin films with Tafel slopes of 40-49 mV·dec-1 exhibited highly efficient electrocatalytic activity for HER. The electrocatalytic activity of Ir-Ni thin films showed a loading dependence. As the solution temperature raised from 20 oC to 60 oC, the hydrogen evolution performance of Ir-Ni thin films improved. The apparent activation energy value of Ir88Ni12 film was 7.1 kJ·mol-1. Long-term hydrogen evolution tests exhibited excellent electrocatalystic stability in alkaline solution.


2020 ◽  
Vol 58 (4) ◽  
pp. 263-271
Author(s):  
Yaejin Hong ◽  
Seung-Hwan Jeon ◽  
Hyukhyun Ryu ◽  
Won-Jae Lee

In this study, Fe2O3 photoelectrode thin films were grown on fluorine-doped tin oxide substrates at various temperatures ranging from 145 to 220 oC using modified chemical bath deposition. The morphological, structural, electrical, and photoelectrochemical properties of the resulting Fe2O3 photoelectrode were analyzed using field emission scanning electron microscopy, X-ray diffraction, electrochemical impedance spectroscopy, and a three-electrode potentiostat/galvanostat, respectively. Growth temperature and hydrochloric acid etching both affected the growth of the Fe2O3 photoelectrode, with Fe2O3 thin film thickness first increasing and then decreasing as growth temperature increased. The pH value of the precursor solution varied according to growth temperature, which in turn affected film thickness. The highest photocurrent density (0.53 mA/cm2 at 0.5 V vs. saturated calomel electrode) was obtained from the Fe2O3 photoelectrode grown at 190 oC, which yielded the thickest thin film, smallest full width at half maximum and largest grain size for the (104) and (110) plane, and highest flat-band potential value. Based on these findings, the photoelectrochemical properties of Fe2O3 photoelectrodes grown at various temperatures are strongly affected by their morphological, structural, and electrical properties.


2016 ◽  
Vol 58 ◽  
pp. 418-425 ◽  
Author(s):  
Swati J. Patil ◽  
Vaibhav C. Lokhande ◽  
Dong-Weon Lee ◽  
Chandrakant D. Lokhande

2021 ◽  
Vol 4 (9) ◽  
pp. 9046-9056
Author(s):  
Buse Bilbey ◽  
Meltem Sezen ◽  
Cleva W. Ow-Yang ◽  
Busra Tugba Camic ◽  
Aligul Buyukaksoy

Sign in / Sign up

Export Citation Format

Share Document