Potassium Ion Conducting Solids Based on Rare Earth Oxide

2021 ◽  
Vol 13 (3) ◽  
pp. 168781402110077
Author(s):  
Chao Du ◽  
Cuirong Liu ◽  
Xu Yin ◽  
Haocheng Zhao

Herein, we synthesized a new polyethylene glycol (PEG)-based solid polymer electrolyte containing a rare earth oxide, CeO2, using mechanical metallurgy to prepare an encapsulation bonding material for MEMS. The effects of CeO2 content (0–15 wt.%) on the anodic bonding properties of the composites were investigated. Samples were analyzed and characterized by alternating current impedance spectroscopy, X-ray diffraction, scanning electron microscopy, differential scanning calorimetry, tensile strength tests, and anodic bonding experiments. CeO2 reduced the crystallinity of the material, promoted ion migration, increased the conductivity, increased the peak current of the bonding process, and increased the tensile strength. The maximum bonding efficiency and optimal bonding layer were obtained at 8 wt% CeO2. This study expands the applications of solid polymer electrolytes as encapsulation bonding materials.


2016 ◽  
Vol 307 ◽  
pp. 534-541 ◽  
Author(s):  
J. Xia ◽  
L. Yang ◽  
R.T. Wu ◽  
Y.C. Zhou ◽  
L. Zhang ◽  
...  

Wear ◽  
2010 ◽  
Vol 269 (11-12) ◽  
pp. 867-874 ◽  
Author(s):  
P. Tatarko ◽  
M. Kašiarová ◽  
J. Dusza ◽  
J. Morgiel ◽  
P. Šajgalík ◽  
...  

2016 ◽  
Vol 8 (45) ◽  
pp. 31128-31135 ◽  
Author(s):  
Jiaqing Zhuang ◽  
Qi-Jun Sun ◽  
Ye Zhou ◽  
Su-Ting Han ◽  
Li Zhou ◽  
...  

2013 ◽  
Vol 136 (1) ◽  
Author(s):  
Surajit Purkayastha ◽  
D. K. Dwivedi

The effect of CeO2 modification on flame sprayed nickel-tungsten carbide (WC) coatings was investigated. The modified coatings exhibited smaller grain sizes of the ceramic phase due to enhanced dissolution of the WC phase. The rare earth doped coatings, especially Ni-WC +0.9% wt. CeO2, showed superior abrasive wear resistance with respect to the unmodified coating mainly due to enhanced hardness. Coating modified with 0.6% wt. CeO2 demonstrated superior erosion resistance at both impact angles, 30 deg and 90 deg, respectively, primarily due to low porosity levels. Microstructural examination showed different wear mechanisms in conventional and doped coatings.


Sign in / Sign up

Export Citation Format

Share Document