Applications of Embedded Sensors for in-Situ Corrosion Monitoring in Subsea Tunnel

2019 ◽  
Vol 38 (3) ◽  
Author(s):  
Ricardo C. Jacques ◽  
Henrique H. de Oliveira ◽  
Rafael W. F. dos Santos ◽  
Thomas G. R. Clarke

Author(s):  
Komandur Sunder Raj

Abstract Significant research is ongoing on several fronts in smart sensor technologies for optimizing the performance of power generating assets. The initiatives include: 1. Real-time models with advanced computational algorithms, embedded intelligence at sensor and component level for reducing operating costs, improving efficiencies, and lowering emissions. 2. Optical sapphire sensors for monitoring operation and performance of critical components in harsh environments, for improving accuracy of measurements in combustion monitoring, and lowering operating costs. 3. Wireless technologies using (a) microwave acoustic sensors for real-time monitoring of equipment in high temperature/pressure environments (b) integrated gas/temperature acoustic sensors for combustion monitoring in diverse harsh environment locations to improve combustion efficiency, reduce emissions, and lower maintenance costs (c) sensors for sensing temperature, strain and soot accumulation inside coal-fired boilers for detailed condition monitoring, better understanding of combustion and heat exchange processes, improved designs, more efficient operation. 4. Distributed optical fiber sensing system for real-time monitoring and optimization of high temperature profiles for improving efficiency and lowering emissions. 5. Smart parts with embedded sensors for in situ monitoring of multiple parameters in existing and new facilities. 6. Optimizing advanced 3D manufacturing processes for embedded sensors in components for harsh environments to reduce costs and improve efficiency of power generation facilities with carbon capture capabilities. 7. New energy-harvesting materials for powering wireless sensors in harsh environments, improving reliability of wireless sensors in demanding environments, and in-situ monitoring and performance of devices and systems. 8. Real-time, accurate and reliable monitoring of temperature at distributed locations of sensors in harsh environments for improving operations and reducing operating costs. 9. Algorithms and methodologies for designing control systems utilizing distributed intelligence for optimal control of power generation facilities. 10. Gas sensors for monitoring high temperatures in harsh environments for lowering operating costs and better control of operations. 11. Optimizing placement of smart sensors in networks for cognitive behavior and self-learning. This paper provides an overview of the initiatives in smart sensor technologies and their applications in optimizing the performance of power generating facilities.


Sensors ◽  
2009 ◽  
Vol 9 (12) ◽  
pp. 10400-10410 ◽  
Author(s):  
Xinxin Fu ◽  
Junhua Dong ◽  
Enhou Han ◽  
Wei Ke

Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6334
Author(s):  
Tim Savill ◽  
Eifion Jewell

A review is carried out in this paper into techniques that currently exist for, of have the potential to be used for, monitoring the performance of organic coating. Specific attention is paid to the applicability of each method to pre-finished steel used in the construction industry as these are rarely monitored in situ and their expected performance is often only estimated from lab-based accelerated corrosion testing. Monitoring could allow more accurate estimates of building cladding lifespan and required maintenance schedules; provide customers with active performance data; additionally, with a better understanding of performance, more appropriate coatings or coating weights could be selected for a construction project, offering economic benefits as part of smart building developments. An introduction to coatings, their use for corrosion protection, failure mechanisms, and relevant monitoring techniques is given before current assessment techniques are described in terms of their working principles. Examples of recent work are presented for the techniques that have been investigated for monitoring or directly relatable purposes. The review concludes that there are several good reasons why an optimum corrosion monitoring technology does not currently exist, however, promising research is emerging in the field of wireless and embedded sensor design which is providing optimistic results.


2021 ◽  
Author(s):  
Junwen Dai ◽  
◽  
Ahmed E. Fouda ◽  

Monitoring the integrity of well casings is vital for oil and gas well management, which can help maintain production levels, reduce maintenance cost, and protect surrounding environment. An electromagnetic pipe inspection tool with multiple transmitter and receiver arrays operating at multiples frequencies was designed to accurately estimate the individual wall thicknesses of up to five nested pipes. Data acquired from this tool was originally processed based on an axis-symmetric forward model to invert for wall thicknesses of individual pipes. Such processing workflow is only applicable to a typical well completion with a single production tubing inside multiple nested casings. However, in a scenario with dual completions, two production tubings are generally installed to produce from more than one production zone. The presence of more than one tubing breaks the axial-symmetry of the completion structure. In this paper, we propose a new workflow to process data from electromagnetic tools for the application of integrity inspection of non-nested tubulars. A yard test with full-scale mockup demonstrates the performance of the tool. The proposed workflow, including data calibration and model-based inversion, can estimate the magnetic permeability and electrical conductivity of the pipes, along with wall thicknesses, and eccentricity of the tubings with respect to the innermost casing. An in-situ calibration method is applied to mitigate interference from one tubing when the tool is logged inside the other tubing. Model-based inversion enables an accurate estimation of the thickness of outer casings along with the eccentricity of the tubings. In addition, a two-dimensional inversion algorithm is shown to provide more accurate assessment of small corrosion spots. In the yard test, a 150 ft-long mockup includes two strings of 2⅞-in. tubings and two outer casings with four machined defects with different sizes. Logging inside each of the tubing strings was performed, and the two logs are processed to obtain the thicknesses of the tubings, outer casings as well as the eccentricity of the tubings. The inversion results reveal that the tool can accurately detect various kinds of defects on outer casings from one single log, even in the presence of a second tubing. The measurements show that the interference from the adjacent tubing is minimal and its impact on the inversion result can be well mitigated by employing the in-situ calibration. The consistent results from two logs run in each tubing string suggests that it is sufficient to run the tool in only one of the tubing strings, if the goal is solely to inspect corrosion in the outer casings. The techniques presented enable pipe integrity monitoring with a single run inside any one of the tubings and without pulling out any pipes. The data processing workflow based on two-dimensional inversion yields more accurate estimation, which provides critical information to significantly improve the efficiency of well intervention operations, therefore minimizing non-productive time and cost.


CORROSION ◽  
10.5006/3253 ◽  
2019 ◽  
Vol 75 (10) ◽  
pp. 1230-1236
Author(s):  
Alp T. Findikoglu ◽  
Janelle E. Droessler ◽  
Jerzy Chlistunoff ◽  
George S. Goff

Diagnosis and monitoring of corrosion at high temperatures are common challenges in many industries, such as conventional power plants and next generation molten-salt reactor (MSR) nuclear power plants. A simple, noninvasive, in situ acoustic technique was developed to monitor wall loss due to corrosion in a model molten-salt vessel, operating at 500°C to 600°C. This work demonstrated the feasibility of high-temperature corrosion monitoring experimentally, and validated the concept with physical and microstructural analysis, modeling, and numerical simulations. The results of this work could form the basis for the development of a general-purpose, extended-range acoustic monitoring and inspection technique for corrosion at high temperatures (with expected upper range of approximately 900°C), which does not currently exist. Such a technique could be critical for the safe operation of MSRs in the future, as well as for rapid, nondestructive testing of new reactor component materials.


2015 ◽  
Vol 659 ◽  
pp. 628-632
Author(s):  
Pornsak Srisungsitthisunti ◽  
Siriporn Daopiset ◽  
Noparat Kanjanaprayut

Acoustic emission (AE) is a non-destructive technique which is well known for crack monitoring. Moreover, it has been widely used for corrosion and erosion damage on metallic structures. In this study, AE technique was applied for quick monitoring of corrosion resistance of lacquer coatings on tin free steel and laminated steel for food can-packaging. There were three types of coatings: (A) BPA-NI lacquer, (B) BPA-complied lacquer, and (C) PET lamination. These coatings were investigated in flat-sheet and in deformed sheet. Cathodic disbonding (CD) technique was carried out to cause separation between the coating and the metal substrate and initialize corrosion damage. AE signals was detected immediately with potential excitation, and showed good correlation with coating corrosion resistance during corrosion development. AE count signal matched with resulting current during CD, and proportional to corroded areas. In addition, coatings properties were measured before and after the CD process by electrochemical impedance spectroscopy (EIS). A combination of AE and CD techniques offers an in-situ non-destructive corrosion monitoring of coating quality before and during delamination development, and useful for can-packaging testing.


Sign in / Sign up

Export Citation Format

Share Document