scholarly journals A New Experimental Method for in Situ Corrosion Monitoring Under Alternate Wet-Dry Conditions

Sensors ◽  
2009 ◽  
Vol 9 (12) ◽  
pp. 10400-10410 ◽  
Author(s):  
Xinxin Fu ◽  
Junhua Dong ◽  
Enhou Han ◽  
Wei Ke
2014 ◽  
Vol 14 (19) ◽  
pp. 10761-10772 ◽  
Author(s):  
S. S. Steimer ◽  
M. Lampimäki ◽  
E. Coz ◽  
G. Grzinic ◽  
M. Ammann

Abstract. Atmospheric soluble organic aerosol material can become solid or semi-solid. Due to increasing viscosity and decreasing diffusivity, this can impact important processes such as gas uptake and reactivity within aerosols containing such substances. This work explores the dependence of shikimic acid ozonolysis on humidity and thereby viscosity. Shikimic acid, a proxy for oxygenated reactive organic material, reacts with O3 in a Criegee-type reaction. We used an environmental microreactor embedded in a scanning transmission X-ray microscope (STXM) to probe this oxidation process. This technique facilitates in situ measurements with single micron-sized particles and allows to obtain near-edge X-ray absorption fine structure (NEXAFS) spectra with high spatial resolution. Thus, the chemical evolution of the interior of the particles can be followed under reaction conditions. The experiments show that the overall degradation rate of shikimic acid is depending on the relative humidity in a way that is controlled by the decreasing diffusivity of ozone with decreasing humidity. This decreasing diffusivity is most likely linked to the increasing viscosity of the shikimic acid–water mixture. The degradation rate was also depending on particle size, most congruent with a reacto-diffusion limited kinetic case where the reaction progresses only in a shallow layer within the bulk. No gradient in the shikimic acid concentration was observed within the bulk material at any humidity indicating that the diffusivity of shikimic acid is still high enough to allow its equilibration throughout the particles on the timescale of hours at higher humidity and that the thickness of the oxidized layer under dry conditions, where the particles are solid, is beyond the resolution of STXM.


2021 ◽  
Author(s):  
Zijun Li ◽  
Angela Buchholz ◽  
Arttu Ylisirniö ◽  
Luis Barreira ◽  
Liqing Hao ◽  
...  

Abstract. Efforts have been spent on investigating the isothermal evaporation of α-pinene SOA particles at ranges of conditions and decoupling the impacts of viscosity and volatility on evaporation. However, little is known about the evaporation behavior of SOA particles from biogenic organic compounds other than α-pinene. In this study, we investigated the isothermal evaporation behaviors of α-pinene (αpin) and sesquiterpene mixture (SQTmix) SOA particles under a series of relative humidity (RH) conditions. With a set of in-situ instruments, we monitored the evolution of particle size, volatility, and composition during evaporation. Our finding demonstrates that the SQTmix SOA particles evaporated slower than the αpin ones at any set of RH (expressed with the volume fraction remaining (VFR)), which is primarily due to their lower volatility and possibly aided by higher viscosity under dry conditions. We further applied positive matrix factorization (PMF) to thermal desorption data containing volatility and composition information. Analyzing the net change ratios (NCRs) of each PMF-resolved factor, we can quantitatively compare how each sample factor evolves with increasing evaporation time/RH. When sufficient particulate water content was present in either SOA system, the most volatile sample factor was primarily lost via evaporation and changes in other sample factors were mainly governed by aqueous-phase processes. The evolution of each sample factor of SQTmix SOA particles was controlled by a single type of process, whereas for αpin SOA particles it was regulated by multiple processes. As indicated by the coevolution of VFR and NCR, the effect of aqueous-phase processes could vary from one to another according to particle type, sample factors and evaporation timescale.


Soft Matter ◽  
2019 ◽  
Vol 15 (42) ◽  
pp. 8475-8482
Author(s):  
Giovanni Li-Destri ◽  
Roberta Ruffino ◽  
Nunzio Tuccitto ◽  
Giovanni Marletta

We have developed a novel experimental method, which enables quantitative determination of interaction forces between interfacial nanoparticles as a function of the inter-particle distance at liquid interfaces.


2019 ◽  
Vol 38 (3) ◽  
Author(s):  
Ricardo C. Jacques ◽  
Henrique H. de Oliveira ◽  
Rafael W. F. dos Santos ◽  
Thomas G. R. Clarke

Catalysts ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 417 ◽  
Author(s):  
Stephanie Melchers ◽  
Jenny Schneider ◽  
Alexei Emeline ◽  
Detlef Bahnemann

The effect of H2O and O2 on the adsorption and degradation of gaseous acetaldehyde on the anatase TiO2 surface has been studied, in the dark and upon UV illumination, at ambient temperatures. The processes occurring at the surface have been elucidated by means of in situ ATR–FTIR (Attenuated Total Reflection—Fourier Transform Infrared) spectroscopy, while gas detectors allowed the analysis of the adducts and products in the gas phase. In the dark and under dry conditions acetaldehyde reacts independently of the atmosphere, upon aldol condensation to crotonaldehyde. However, under humid conditions, this reaction was prevented due to the replacement of the adsorbed acetaldehyde molecules, by water molecules. Upon UV illumination under oxygenic conditions, acetaldehyde was decomposed to acetate and formate. Under an N2 atmosphere, the formation of acetate and formate was observed during the first hour of illumination, until all adsorbed oxygen had been consumed. In the absence of molecular oxygen acetate, methane, and CO2 were detected, the formation of which most likely involved the participation of the bridging O atoms, within the TiO2 lattice.


Climate ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 111
Author(s):  
Kwesi Akumenyi Quagraine ◽  
Francis Nkrumah ◽  
Cornelia Klein ◽  
Nana Ama Browne Klutse ◽  
Kwesi Twentwewa Quagraine

Focusing on West Africa, a region riddled with in situ data scarcity, we evaluate the summer monsoon monthly rainfall characteristics of five global reanalysis datasets: ERA5, ERA-Interim, JRA-55, MERRA2, and NCEP-R2. Their performance in reproducing the West African monsoon (WAM) climatology, interannual variability, and long-term trends for the main monsoon months are compared to gauge-only and satellite products. We further examine their ability to reproduce teleconnections between sea surface temperatures and monsoon rainfall. All reanalyses are able to represent the average rainfall patterns and seasonal cycle; however, regional biases can be marked. ERA5, ERA-Interim, and NCEP-R2 underestimate rainfall over areas of peak rainfall, with ERA5 showing the strongest underestimation, particularly over the Guinea Highlands. The meridional northward extent of the monsoon rainband is well captured by JRA-55 and MERRA2 but is too narrow in ERA-Interim, for which rainfall stays close to the Guinea Coast. Differences in rainband displacement become particularly evident when comparing strong El Niño Southern Oscillation (ENSO) years, where all reanalyses except ERA-Interim reproduce wetter Sahelian conditions for La Niña, while overestimating dry conditions at the coast except for NCEP-R2. Precipitation trends are not coherent across reanalyses and magnitudes are generally overestimated compared to observations, with only JRA-55 and NCEP-R2 displaying the expected positive trend in the Sahel. ERA5 generally outperforms ERA-Interim, highlighting clear improvements over its predecessor. Ultimately, we find the strengths of reanalyses to strongly vary across the region.


2019 ◽  
Vol 2019 ◽  
pp. 1-18 ◽  
Author(s):  
Juan A. Rivera ◽  
Sofía Hinrichs ◽  
Georgina Marianetti

The Climate Hazards group Infrared Precipitation with Stations (CHIRPS) dataset was conceived as a tool for monitoring drought and environmental change over land. Recent validation efforts along South America have assessed its suitability for reproducing the main spatial and temporal features of precipitation. Nevertheless, little has been done regarding the ability of CHIRPS for the assessment of wet and dry conditions, particularly in areas where in situ precipitation records are scarce. In this paper, we investigated the performance of CHIRPS for monitoring wet and dry events along the semiarid Central-Western Argentina. Using the Standardized Precipitation Index (SPI), we compared the CHIRPS database with records from 49 meteorological stations along the study area for the period 1987–2016. Results indicate that the CHIRPS dataset adequately reproduced the temporal variability of SPI on multiple timescales (1 month, 3 months, and 6 months), particularly in the region dominated by warm season precipitation. The large overestimation of the seasonal precipitation in the region dominated by cold season precipitation can introduce errors that are reflected in the performance of CHIRPS over the western portion of the domain. The frequency of wet and dry classes was accurately reproduced by CHIRPS on timescales larger than 1 month (SPI1), given the existence of a wet bias that produces an underestimation of the frequency of zero values. This bias is further translated to the evaluation of the SPI1 during the spatial and temporal assessment of historical dry (1998) and wet (2016) events, especially for the classification of extreme dry/wet months. The results from the evaluation indicate that CHIRPS is a suitable tool for assessing dry and wet conditions for timescales longer than 1 month and can support decision-making process within the hydrometeorological agencies over the region.


2014 ◽  
Vol 14 (4) ◽  
pp. 2139-2153 ◽  
Author(s):  
S. Crumeyrolle ◽  
G. Chen ◽  
L. Ziemba ◽  
A. Beyersdorf ◽  
L. Thornhill ◽  
...  

Abstract. During the NASA DISCOVER-AQ campaign over the US Baltimore, MD–Washington, D.C., metropolitan area in July 2011, the NASA P-3B aircraft performed extensive profiling of aerosol optical, chemical, and microphysical properties. These in situ profiles were coincident with ground-based remote sensing (AERONET) and in situ (PM2.5) measurements. Here, we use this data set to study the correlation between the PM2.5 observations at the surface and the column integrated measurements. Aerosol optical depth (AOD550 nm) calculated with the extinction (550 nm) measured during the in situ profiles was found to be strongly correlated with the volume of aerosols present in the boundary layer (BL). Despite the strong correlation, some variability remains, and we find that the presence of aerosol layers above the BL (in the buffer layer – BuL) introduces significant uncertainties in PM2.5 estimates based on column-integrated measurements (overestimation of PM2.5 by a factor of 5). This suggests that the use of active remote sensing techniques would dramatically improve air quality retrievals. Indeed, the relationship between the AOD550 nm and the PM2.5 is strongly improved by accounting for the aerosol present in and above the BL (i.e., integrating the aerosol loading from the surface to the top of the BuL). Since more than 15% of the AOD values observed during DISCOVER-AQ are dominated by aerosol water uptake, the f(RH)amb (ratio of scattering coefficient at ambient relative humidity (RH) to scattering coefficient at low RH; see Sect. 3.2) is used to study the impact of the aerosol hygroscopicity on the PM2.5 retrievals. The results indicate that PM2.5 can be predicted within a factor up to 2 even when the vertical variability of the f(RH)amb is assumed to be negligible. Moreover, f(RH = 80%) and RH measurements performed at the ground may be used to estimate the f(RH)amb during dry conditions (RHBL < 55%).


Sign in / Sign up

Export Citation Format

Share Document