Comparison of Low k Dielectric Film Properties Under Ultra Violet Curing Technique

2018 ◽  
Author(s):  
K. A. Rubin ◽  
W. Jolley ◽  
Y. Yang

Abstract Scanning Microwave Impedance Microscopy (sMIM) can be used to characterize dielectric thin films and to quantitatively discern film thickness differences. FEM modeling of the sMIM response provides understanding of how to connect the measured sMIM signals to the underlying properties of the dielectric film and its substrate. Modeling shows that sMIM can be used to characterize a range of dielectric film thicknesses spanning both low-k and medium-k dielectric constants. A model system consisting of SiO2 thin films of various thickness on silicon substrates is used to illustrate the technique experimentally.


Author(s):  
V. N. Kruchinin ◽  
V. A. Volodin ◽  
S. V. Rykhlitskii ◽  
V. A. Gritsenko ◽  
I. P. Posvirin ◽  
...  

2007 ◽  
Vol 4 (4) ◽  
pp. 647-652
Author(s):  
Baghdad Science Journal

Zinc sulfide(ZnS) thin films of different thickness were deposited on corning glass with the substrate kept at room temperature and high vacuum using thermal evaporation technique.the film properties investigated include their absorbance/transmittance/reflectance spectra,band gap,refractive index,extinction coefficient,complex dielectric constant and thickness.The films were found to exhibt high transmittance(59-98%) ,low absorbance and low reflectance in the visible/near infrared region up to 900 nm..However, the absorbance of the films were found to be high in the ultra violet region with peak around 360 nm.The thickness(using optical interference fringes method) of various films thichness(100,200,300,and 400) nm.The band gap measured was found to be in the range (3.52 -3.78 )eV.


2009 ◽  
Vol 106 (3) ◽  
pp. 033503 ◽  
Author(s):  
Han Li ◽  
Ting Y. Tsui ◽  
Joost J. Vlassak

Coatings ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 155
Author(s):  
Yi-Lung Cheng ◽  
Chih-Yen Lee ◽  
Wei-Fan Peng ◽  
Giin-Shan Chen ◽  
Jau-Shiung Fang

In this study, Cu-2.2 at. % Nd alloy films using a co-sputtering deposition method were directly deposited onto porous low-dielectric-constant (low-k) films (SiOCH). The effects of CuNd alloy film on the electrical properties and reliability of porous low-k dielectric films were studied. The electrical characteristics and reliability of the porous low-k dielectric film with CuNd alloy film were enhanced by annealing at 425 °C. The formation of self-forming barrier at the CuNd/SiOCH interface was responsible for this improvement. Therefore, integration with CuNd and porous low-k dielectric is a promising process for advanced Cu interconnects.


2019 ◽  
Vol 28 (6) ◽  
pp. 493-502
Author(s):  
Hang Cheong Sio ◽  
Sieu Pheng Phang ◽  
Hieu T. Nguyen ◽  
Ziv Hameiri ◽  
Daniel Macdonald

Sign in / Sign up

Export Citation Format

Share Document