Rapid Proton Transmission through Nafion | Graphene | ALD Alumina | Nafion Membranes

2020 ◽  
Vol MA2020-01 (10) ◽  
pp. 814-814
Author(s):  
Saheed Bukola ◽  
Alex B. F. Martinson ◽  
Duyen Cao ◽  
Stephen E Creager
1988 ◽  
Vol 53 (12) ◽  
pp. 3164-3170 ◽  
Author(s):  
Jaromír Hlavatý ◽  
Jiří Volke

Electrolysis of quaternary ammonium bromides and iodides in a divided cell with a Nafion membrane yields quaternary polyhalogenides at a carbon anode in water-ethanolic anolytes. The electrodialysis of tetrabutylammonium iodide in a cell with a Nafion membrane enables generation of tetrabutylammonium hydroxide. In electrolytic reduction of nitrobenzene in presence of 1,3-dibromopropane, N-phenylisooxazolidine results in an approx. 60% yield. This electrosynthesis takes place in dimethylformamide with tetrabutylammonium bromide at a glassy-carbon cathode in a divided cell. In the electroreduction of lobelanine hydrogensulfate in a divided cell in acid water-ethanolic media at a lead cathode prevalently lobelanidine has been obtained.


2013 ◽  
Vol 228 ◽  
pp. 151-158 ◽  
Author(s):  
Ayokunle Omosebi ◽  
Ronald S. Besser

2015 ◽  
Vol 162 (14) ◽  
pp. E325-E333 ◽  
Author(s):  
J. Gonzalez-Ausejo ◽  
L. Cabedo ◽  
J. Gámez-Pérez ◽  
S. Mollá ◽  
E. Giménez ◽  
...  

Author(s):  
T. Romero ◽  
W. Me´rida

Transient water transport experiments on Nafion of different thicknesses were carried out in the temperature range of 30 to 70 °C. These experiments report on water transport measurements under activity gradients in the time domain for liquid and vapour equilibrated Nafion membranes. Using a permeability test rig with a gated valve, the water crossover was measured as a function of time. The typical response is shown as a time dependent flux, and it shows the dynamic transport from an initially dry condition up to the final steady state. Contrarily to previous reports from dynamic water transport measurements, where the activity gradient across the membrane is absent; in this work, the membrane was subjected to an activity gradient acting as the driving force to transport water from an environment with higher water activity to an environment with lower water activity through the membrane’s structure. Measurements explored temperature and membrane thickness variation effect on the transient response. Results showed dependency on temperature and a slower water transport rate across the vapour-membrane interface than for the liquid-membrane interface. These measurements showed the transport dependency on water content at the beginning of the experiment when the membrane was in a close-to-dry condition suggesting a transport phenomenon transition due to a reached critical water content value. The new protocol for transient measurements proposed here will allow the characterization of water transport dependency on membrane water content with a more rational representation of the membrane-environment interface.


2017 ◽  
Vol 71 (11) ◽  
pp. 2504-2511 ◽  
Author(s):  
Daniele T. Dias ◽  
Guy Lopes ◽  
Tales Ferreira ◽  
Ivanir L. Oliveira ◽  
Caroline D. Rosa

The Nafion membranes are widely used in electrochemical applications such as fuel cells, chlor-alkali cells, and actuators–sensors. In this work, the thermal-optical characterization of Nafion in acid form was performed by photoacoustic spectroscopy, thermogravimetry, and differential scanning calorimetry. In the experimental procedure three distinct hydration levels were considered: (1) pristine membrane (λ ≅ H2O/–SO3H ≅ 5.6); (2) swelling process (λ ≅ 17.4); and (3) drying at controlled room temperature after swelling process (λ ≅ 6.5). The discovered behaviors showed significant irreversible structural changes induced by water retention in the membrane. These structural changes depend on the water population present in the clusters and also affect the directional thermal diffusivity of the membrane irreversibly.


2007 ◽  
Vol 294 (1-2) ◽  
pp. 159-168 ◽  
Author(s):  
Marino Lavorgna ◽  
Leno Mascia ◽  
Giuseppe Mensitieri ◽  
Marianne Gilbert ◽  
Giuseppe Scherillo ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document