Assembling an All-Solid-State Ceramic Battery: Assessment of Chemical and Thermal Compatibility of Solid Ceramic Electrolytes and Active Material Using High Temperature X-Ray Diffraction

2020 ◽  
Vol MA2020-01 (2) ◽  
pp. 309-309
Author(s):  
Marc Bertrand ◽  
Steeve Rousselot ◽  
David Ayme-Perrot ◽  
Mickael Dollé
2018 ◽  
Vol 74 (5) ◽  
pp. 623-627 ◽  
Author(s):  
Sviatoslav Baranets ◽  
Hua He ◽  
Svilen Bobev

Three isostructural transition-metal arsenides and germanides, namely niobium nickel arsenide, Nb0.92(1)NiAs, niobium cobalt arsenide, NbCoAs, and niobium nickel germanide, NbNiGe, were obtained as inadvertent side products of high-temperature reactions in sealed niobium containers. In addition to reporting for the very first time the structures of the title compounds, refined from single-crystal X-ray diffraction data, this article also serves as a reminder that niobium containers may not be suitable for the synthesis of ternary arsenides and germanides by traditional high-temperature reactions. Synthetic work involving alkali or alkaline-earth metals, transition or early post-transition metals, and elements from groups 14 or 15 under such conditions may yield Nb-containing products, which at times could be the major products of such reactions.


2020 ◽  
Vol 18 (11) ◽  
pp. 14-18
Author(s):  
Abbas K. Saadon ◽  
Kareem A. Jasim ◽  
Auday H. Shaban

The high temperature superconductor’s compounds are one of the hot spot field of science, due to their applications in industries. Hg0.8Sb0.2Ba2Ca2Cu3O8+δ and Hg0.8Sb0.2Ba2Ca1Cu2O6+δ, were manufactured using a doable-step of solid state reaction method. The samples were sintered at 800 ° C. The transition temperatures Tc are found from electrically resistively by using four probe techniques. The resistivity become zero when the transition temperature Tc(offset) have 131 and 119 K, and the onset temperature Tc(onset) have 139 K for Hg0.8Sb0.2Ba2Ca2Cu3O8+δ and 132 K for Hg0.8Sb0.2Ba2Ca1Cu2O6+δ. Analysis of X-ray diffraction showed a tetragonal structure with lattice parameters changes for all samples.


2020 ◽  
Vol 15 (2) ◽  
pp. 197-203
Author(s):  
Yujie Sun ◽  
Xia Yang ◽  
Yue Huang ◽  
Jianquan Li ◽  
Xinghua Cen ◽  
...  

In this study, we investigated the influence of MnTiO3 nanoparticles additive on hydrogen released performance of NaAlH4 for the first time. The MnTiO3 nanoparticles were successfully synthesized using conventional solid-state ceramic route. It was found that the hydrogen released performance of NaAlH4 can be significantly improved by the addition of MnTiO3 nanoparticles. Meantime, the composite of NaAlH4 doped 5 wt% MnTiO3 possessed excellent dehydrogenation properties, the onset dehydrogenation temperature was only 70.6 °C, reduced by about 105 °C in comparison with the pristine NaAlH4, and approximately 5.01 wt% of hydrogen could be released from composite with temperature heated to 220 °C. The isothermal dehydrogenation test results indicated that the amount of hydrogen released by NaAlH4-5 wt% MnTiO3 composite could reach 4.4 wt% under 200 °C within 25 min. According to the analysis of X-ray diffraction, the presence of MnTiO3 nanoparticles did not alter the overall dehydrogenation pathway of NaAlH4, and the Al3 Ti phases formed after dehydrogenation, which enhanced hydrogen desorption performances of NaAlH4 .


1995 ◽  
Vol 10 (3) ◽  
pp. 165-169 ◽  
Author(s):  
W. Pitschke ◽  
W. Bieger ◽  
G. Krabbes ◽  
U. Wiesner

The crystallographic data of YBa2Cu3O7−δ, Y2BaCuO5, BaCu2O2, and YBa4Cu3O9 at high temperatures and p(O2)<10 Pa have been derived on the basis of HT-XRD measurements. Whereas Y2BaCuO5 expands nearly isotropically, YBa2Cu3O7−δ and BaCu2O2 show anisotropic expansions. Furthermore, the first decomposition step of the considered compounds at p(O2)<10 Pa was observed. BaCu2O2 melts congruently at T ≍ 1273 K and Y2BaCuO5 decomposes via a peritectic reaction into Y2O3, Y2BaO4 and melts at T ≍ 1323 K. A solid-state reaction into Y2BaCuO5 and BaCu2O2 was indicated for YBa2Cu3O7−δ at T ≍ 1123 K. Because YBa4Cu3O9 becomes unstable at T ≍ 1123 K, this compound cannot be formed by the primary decomposition reaction of YBa2Cu3O7−δ


2018 ◽  
Vol 73 (2) ◽  
pp. 99-103 ◽  
Author(s):  
Lu Pan ◽  
Xiaozhan Yang ◽  
Chaoyue Xiong ◽  
Dashen Deng ◽  
Chunlin Qin ◽  
...  

AbstractA series of new red-orange emission phosphors Na2BaMg(PO4)2:Pr3+ were synthesised by a high-temperature solid-state reaction. The crystal structure and photoluminescence properties of these samples were characterised by X-ray diffraction and spectroscopic measurements. This compound holds P3̅m1 space group of the trigonal system with the lattice parameters of hexagonal cell a=0.5304(3) nm and c=0.6989(3) nm. The phosphor emits the strongest peak at 606 nm when excited by 449 nm. The average Commission Internationale de l’Eclairage chromaticity coordinates calculated for the phosphors are (0.52, 0.46). The results demonstrate the potential application of these phosphors in solid-state lighting and other fields.


1999 ◽  
Vol 14 (2) ◽  
pp. 456-459 ◽  
Author(s):  
V. Swamy ◽  
N. A. Dubrovinskaya ◽  
L. S. Dubrovinsky

Powder x-ray diffraction data of yttria (Y2O3) were obtained from room temperature to melting point with the thin wire resistance heating technique. A solid-state phase transition was observed at 2512 ± 25 K and melting of the high-uemperature phase at 2705 ± 25 K. Thermal expansion data for α–Y2O3 (C-type) are given for the range 298–2540 K. The unit cell parameter increases nonlinearly, especially just before the solid-state transition. The x-ray diffraction spectrum of the high-temperature phase is consistent with the fluorite-type structure (space group Fm3) with a refined unit cell parameter a = 5.3903(6) Å at 2530 K. The sample recrystallized rapidly above 2540 K, and above 2730 K, all the diffraction lines and spots disappeared from the x-ray diffraction spectrum that suggests complete melting.


2021 ◽  
Vol 904 ◽  
pp. 329-333
Author(s):  
Qun Si Wang ◽  
Jun Feng Ma ◽  
Tian Qing Cui ◽  
Dong Bin Tang ◽  
Qi Zhou

M2SiO4: Tb3+, Mn2+, Nd3+ (M = Mg2+, Ca2+, Sr2+, and Ba2+) phosphors suitable for near-ultraviolet-violet radiation excitation were successfully prepared at 1400 °C in N2 atmosphere by a high-temperature solid-state reaction, and their phase compositions and luminescent performance were also studied by X-ray diffraction (XRD), photoluminescence spectra. Results show that their emission intensity increases in the order of Ca2SiO4 > Mg2SiO4 > Sr2SiO4 > Ba2SiO4 matrix phosphor. Ca1.94SiO4: 0.02Tb3 +, 0.02Mn2+, 0.02Nd2+ phosphor exhibits the best luminescence performance.


2017 ◽  
Vol 72 (2) ◽  
pp. 153-158 ◽  
Author(s):  
Sebastian Bräuchle ◽  
Hubert Huppertz

AbstractLi3Y(BO3)2 was prepared by high-temperature solid state synthesis at 900°C in a platinum crucible from lithium carbonate, boric acid, and yttrium(III) oxide. The compound crystallizes monoclinically in the space group P21/c (no. 14) (Z=4) isotypically to Li3Gd(BO3)2. The structure was refined from single-crystal X-ray diffraction data: a=8.616(3), b=6.416(3), c=10.014(2) Å, β=116.6(2)°, V=494.9(3) Å3, R1=0.0211, and wR2=0.0378 for all data. The crystal structure of Li3Y(BO3)2 consists of [Y2O14] dinuclear units, which are interconnected to each other by planar B(1)O3 groups and LiO4 tetrahedra via common edges and corners along the a axis.


2016 ◽  
Vol 71 (12) ◽  
pp. 1225-1232
Author(s):  
Sebastian Bräuchle ◽  
Clivia Hejny ◽  
Hubert Huppertz

AbstractBaSr2Ge3O9 was prepared by high-temperature solid-state synthesis at 1100°C in a platinum crucible from barium carbonate, strontium carbonate, and germanium(IV) oxide. The compound crystallizes in the triclinic space group P1̅ (no. 2) isotypically to walstromite BaCa2Si3O9. The structure was refined from single-crystal X-ray diffraction data: a=7.104(5), b=10.060(7), c=7.099(5) Å, α=83.0(2), β=77.0(2), γ=70.2(2)°, V=464.3(6) Å3, R1=0.0230, and wR2=0.0602 for all data. BaSr2Ge3O9 is characterized by three-membered rings of germanate tetrahedra. There are three crystallographically different Ge sites (Ge1, Ge2, and Ge3) in each [Ge3O9]6− ring. The rings occur in layers with the apices of alternating rings pointing in opposite directions. The Sr2+ and Ba2+ ions are located in between. The Sr1 cation is eight-fold coordinated, while Sr2 is octahedrally surrounded by oxide anions, and the Ba cation again eight-fold coordinated.


Sign in / Sign up

Export Citation Format

Share Document