BTEX Detection Using Piezoelectric Cantilever with Mesocellular Foam Silica Functionalized with Hexamethyldisilazane Sensitive Coating

2020 ◽  
Vol MA2020-01 (31) ◽  
pp. 2325-2325
Author(s):  
Hélène Debéda ◽  
Onuma Santawitee ◽  
Yoothapong Klinthongchai ◽  
Angkana Phongphut ◽  
Kroekchai Inpor ◽  
...  
2019 ◽  
Vol 85 (6) ◽  
pp. 53-63 ◽  
Author(s):  
I. E. Vasil’ev ◽  
Yu. G. Matvienko ◽  
A. V. Pankov ◽  
A. G. Kalinin

The results of using early damage diagnostics technique (developed in the Mechanical Engineering Research Institute of the Russian Academy of Sciences (IMASH RAN) for detecting the latent damage of an aviation panel made of composite material upon bench tensile tests are presented. We have assessed the capabilities of the developed technique and software regarding damage detection at the early stage of panel loading in conditions of elastic strain of the material using brittle strain-sensitive coating and simultaneous crack detection in the coating with a high-speed video camera “Video-print” and acoustic emission system “A-Line 32D.” When revealing a subsurface defect (a notch of the middle stringer) of the aviation panel, the general concept of damage detection at the early stage of loading in conditions of elastic behavior of the material was also tested in the course of the experiment, as well as the software specially developed for cluster analysis and classification of detected location pulses along with the equipment and software for simultaneous recording of video data flows and arrays of acoustic emission (AE) data. Synchronous recording of video images and AE pulses ensured precise control of the cracking process in the brittle strain-sensitive coating (tensocoating)at all stages of the experiment, whereas the use of structural-phenomenological approach kept track of the main trends in damage accumulation at different structural levels and identify the sources of their origin when classifying recorded AE data arrays. The combined use of oxide tensocoatings and high-speed video recording synchronized with the AE control system, provide the possibility of definite determination of the subsurface defect, reveal the maximum principal strains in the area of crack formation, quantify them and identify the main sources of AE signals upon monitoring the state of the aviation panel under loading P = 90 kN, which is about 12% of the critical load.


Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 87
Author(s):  
Zhenxi Liu ◽  
Jiamin Chen ◽  
Xudong Zou

The piezoelectric cantilever resonator is used widely in many fields because of its perfect design, easy-to-control process, easy integration with the integrated circuit. The tip displacement and resonance frequency are two important characters of the piezoelectric cantilever resonator and many models are used to characterize them. However, these models are only suitable for the piezoelectric cantilever with the same width layers. To accurately characterize the piezoelectric cantilever resonators with different width layers, a novel model is proposed for predicting the tip displacement and resonance frequency. The results show that the model is in good agreement with the finite element method (FEM) simulation and experiment measurements, the tip displacement error is no more than 6%, the errors of the first, second, and third-order resonance frequency between theoretical values and measured results are 1.63%, 1.18%, and 0.51%, respectively. Finally, a discussion of the tip displacement of the piezoelectric cantilever resonator when the second layer is null, electrode, or silicon oxide (SiO2) is presented, and the utility of the model as a design tool for specifying the tip displacement and resonance frequency is demonstrated. Furthermore, this model can also be extended to characterize the piezoelectric cantilever with n-layer film or piezoelectric doubly clamped beam.


Sensors ◽  
2020 ◽  
Vol 20 (4) ◽  
pp. 1206 ◽  
Author(s):  
Wei-Jiun Su ◽  
Jia-Han Lin ◽  
Wei-Chang Li

This paper investigates a piezoelectric energy harvester that consists of a piezoelectric cantilever and a tip mass for horizontal rotational motion. Rotational motion results in centrifugal force, which causes the axial load on the beam and alters the resonant frequency of the system. The piezoelectric energy harvester is installed on a rotational hub in three orientations—inward, outward, and tilted configurations—to examine their influence on the performance of the harvester. The theoretical model of the piezoelectric energy harvester is developed to explain the dynamics of the system and experiments are conducted to validate the model. Theoretical and experimental studies are presented with various tilt angles and distances between the harvester and the rotating center. The results show that the installation distance and the tilt angle can be used to adjust the resonant frequency of the system to match the excitation frequency.


2014 ◽  
Vol 11 (8) ◽  
pp. 728-733 ◽  
Author(s):  
Grégory Mertz ◽  
Thierry Fouquet ◽  
Claude Becker ◽  
Fabio Ziarelli ◽  
David Ruch

2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Yue Hou ◽  
Linbing Wang ◽  
Dawei Wang ◽  
Hailu Yang ◽  
Meng Guo ◽  
...  

Green and sustainable power supply for sensors in pavement monitoring system has attracted attentions of civil engineers recently. In this paper, the piezoelectric energy harvesting technology is used to provide the power for the acceleration sensor and Radio Frequency (RF) communication. The developed piezoelectric bimorph cantilever beam is used for collecting the vibrational energy. The energy collection circuit is used to charge the battery, where the power can achieve 1.68 mW and can meet the power need of acceleration sensor for data collection and transmission in one operation cycle, that is, 32.8 seconds. Based on the piezoelectric-cantilever-beam powered sensor, the preliminary study on the IoT-based pavement monitoring platform is suggested, which provides a new applicable approach for civil infrastructure health monitoring.


Sign in / Sign up

Export Citation Format

Share Document