Improving Kinetic in Redox Conversion By Adopting Cosse Catalytic Material in Li-S Battery

2020 ◽  
Vol MA2020-02 (2) ◽  
pp. 411-411
Author(s):  
Haeun Lee ◽  
Uijin Chang ◽  
Hayong Song ◽  
KwangSup Eom
Author(s):  
О. Halak ◽  
N. Poltorak ◽  
О. Kravchuk ◽  
V. Synko ◽  
Y. Korol

Contamination of hazardous chemicals is currently considered one of the major environmental problems. The methods of purification of gaseous emissions depending on the physicochemical properties of pollutants, in particular dangerous chemical, their aggregate state, concentration in the gas environment are studied in this article. The effect of aerosol content such as dust and soot is analyzed as well as the efficiency of purification methods at different temperature intervals, methods of purification of multicomponent mixtures. The comparative characteristics of thermochemical, reagent, sorption and catalytic methods are given and the prospects of their application in filtering systems of stationary and mobile objects are evaluated. It has been proved that almost any organic compounds can be oxidized (mineralized) on the TiO2surface. In practice, any photocatalytic air purifier includes a porous TiO2 deposited carrier, which is irradiated with ultraviolet rays and through which air is purged. Photocatalysis is suitable for domestic use as it can occur at room temperature. For example, a thermocatalytic method of destroying harmful substances requires preheating the air to a temperature above 200 ° C. Photocatalysis destroys substances that penetrate even through activated carbon filters. Features of formation of oxide coatings by plasma-electrolytic oxidation of titanium alloys are considered. It is proposed to refine the design of collective defense systems on armored vehicles and stationary facilities with additional installation in the filter-absorber of the grid with the deposited layer of catalytic material, which will neutralize various types of dangerous chemicals due to photocatalytic air purification.


2019 ◽  
Vol 16 (2) ◽  
pp. 288-293
Author(s):  
Yogesh W. More ◽  
Sunil U. Tekale ◽  
Nitishkumar S. Kaminwar ◽  
László Kótai ◽  
Tibor Pasinszki ◽  
...  

Aim and Objective: The present study was performed with the aim to develop an efficient and environmentally benign protocol for the synthesis of biologically siginifcant 3, 4-dihydropyrano[c]chromenes using a new catalytic material. The protocol involves the use of a reusable, environment friendly materials and solvents with operational simplicity. Materials and Methods: Carbon microsphere supported copper nanoparticles (Cu-NP/C) prepared from loaded cation exchange resin were synthesized, characterized with well versed analytical techniques such as XRD, SEM and Raman spectroscopy and the synthesized material was used as a catalyst for the environmentally benign synthesis of 3,4-dihydropyrano[c]chromenes. Results: The formation of carbon microsphere supported copper nanoparticles (Cu-NP/C) prepared from loaded cation exchange resin was confirmed by XRD, SEM and Raman spectroscopy which was employed as a heterogeneous material for the synthesis of 3,4-dihydropyrano[c]chromenes. The products formed were characterized by the analysis of spectroscopic data - NMR, IR and mass. The safe catalytic system offers several advantages including operational simplicity, environmental friendliness, high yield, and reusability of catalyst and green chemical transformation. Conclusion: Herein we report an easy and efficient protocol for the one-pot synthesis of dihydropyrano[ c]chromenes using environmentally benign MCR approach in ethanol as the green solvent. The method developed herein constitutes a valuable addition to the existing methods for the synthesis of titled compounds.


Fuel ◽  
2021 ◽  
Vol 291 ◽  
pp. 120113
Author(s):  
Girivyankatesh Hippargi ◽  
Swapna Anjankar ◽  
Reddithota J. Krupadam ◽  
Sadhana S. Rayalu

2021 ◽  
Author(s):  
Bo Chen ◽  
Lang Chen ◽  
Zijun Yan ◽  
Jinyang Kang ◽  
Shan-Yong Chen ◽  
...  

Photocatalytic conversion of biomass derived chemicals to valuable products is a highly sustainable process. Herein we report the photocatalytic hydrogenation of maleic acid to succinic acid and oxidation of 5-hydroxymethylfurfural...


2019 ◽  
Vol 289 ◽  
pp. 05004 ◽  
Author(s):  
Diana-Maria Mircea

Negative effects of environmental pollution pose a significant risk to agriculture, water resources and human health. This can however be reduced by selecting appropriate materials in construction and landscape architecture. It is well-known that strong sunlight or ultraviolet light decomposes many organic materials in a slow natural process. Photocatalytic substances accelerate this process and when used in concrete (which is one of the most widely used construction materials), permit the treatment of pollutants close to their source by applying a self-cleaning principle: decomposing organic materials, biological materials and pollutants into molecules like oxygen, water, carbon dioxide, nitrates, and sulphates. Catalytic material activation will start due to energy that is received from sunlight (it also can be activated using artificial lights), and self-cleaning begins when this material is activated. Beside other properties, this innovative self-cleaning concrete also keeps its colour for far longer than other traditional building materials, making it a desirable solution for landscaping applications.


Nanoscale ◽  
2022 ◽  
Author(s):  
Zhiyu Zhou ◽  
Zexiang Chen ◽  
Yang Zhao ◽  
Huifang Lv ◽  
Hualiang Wei ◽  
...  

In recent years and following the progress made in lithium-ion battery technology, substantial efforts have been devoted to developing practical lithium-sulfur (Li–S) batteries for next-generation commercial energy storage devices. The...


2021 ◽  
Vol 66 (5) ◽  
pp. 773-776
Author(s):  
A. G. Ivanova ◽  
N. N. Gubanova ◽  
O. A. Zagrebelnyy ◽  
E. L. Krasnopeeva ◽  
I. Yu. Kruchinina ◽  
...  

2016 ◽  
Vol 10 (03) ◽  
pp. 1750015
Author(s):  
Feng-Rui Wang ◽  
Hui-Ping Sun ◽  
Yan Wang ◽  
Jin-Ku Liu ◽  
Yi Fang ◽  
...  

An easy recyclable and interesting Ag3PO4@Pt@TiO2 (APTP) three-phase heterocrystal chains were self-assembled by the cohesive action and chemical construction of polyvinylpyrrolidone (PVP). We found that a new electron–hole transmission path has been built via the rematch of the band structure of Ag3PO4, Pt and TiO2 which extends the light absorption and promoted the electron–hole separation to treat the antibiotic residues in the water. Based on the thorough investigations, a new catalytic material was provided for antibiotics degradation. The catalytic activity of APTP toward the degradation of tetracycline solution was enhanced by 166.67% and the stability increased remarkably compared with pure Ag3PO4 through the integration of different functional components.


Sign in / Sign up

Export Citation Format

Share Document