scholarly journals Pulse Reverse Alloy Plating for Increased Lifetimes for Biocombustors

2019 ◽  
Author(s):  
Jing Xu ◽  
Tim Hall ◽  
Santosh Vijapur ◽  
DAN WANG ◽  
Jennings E. Taylor ◽  
...  

Biomass embodies tremendous potential as a renewable energy resource. According to the biomass Thermal Energy Council (BTEC), biomass energy is renewable, carbon neutral, domestic and technologically mature. In addition, the low cost per BTU of wood chips and pellets relative to fossil fuels makes biomass an attractive thermal energy source. Furthermore, ~7% of global energy consumption comprises small-scale biomass combustion, representing a tremendous market for technologies that facilitate enhanced biomass utilization. However, a major challenge associated with utilization of biomass is its combustion behavior. The moisture content, chemical composition, and combustion efficiency varies depending on the source of biomass. Small scale biomass combustors (Figure 1) which for cost reasons are often constructed of mild or low-alloy steels, during operation are subjected to corrosive environments which include alkali halides (borne, e.g., by fly ash particulates), mineral/halogen acids and water; as well as various others such as sulfur and nitrogen oxides. There is a need to create more efficient, longer lasting, cleaner, and cost effective cookstoves for use in burning biomaterials. The materials used for cookstoves must improve burning efficiency, must be able to operate at higher temperatures, and should be low cost material systems to durably perform in the corrosive environments.Within this context, Faraday Technology Inc. is working on developing low cost and high value corrosion-resistant alloy coatings for existing bio-combustors or lower cost steels with the goal of increasing their functional lifetime, while reducing the component cost. The manufacturing process involves electrodeposition of binary/ternary/quaternary alloys consisting of [Ni/Co]-Cr-[Mo/Fe] onto a low cost substrate and subsequent accelerated high temperature corrosion evaluation. A wide array of electrolytes and processing parameters were evaluated in order to understand these effects on the deposit composition, structure, and high-temperature corrosion resistance properties towards the goal of developing an ideal alloy coating. Specifically, 100 wt% Cr, 7 wt% Co- 93 wt% Cr binary and 15 wt% Ni – 20 wt% Cr – 55 wt% Co (NiCoCr) ternary alloy coatings demonstrated enhanced corrosion resistance when exposed to an aggressive environment (~700°C, 1000 hr, coating surface salted with ~1 mg/cm2 every 100 hours). When compared to the SS base material the Cr/CoCr alloy coatings exhibited effective protection to the substrate and over 10 times lifetime improvement to its base material.

2018 ◽  
Author(s):  
Tim Hall ◽  
Santosh Vijapur ◽  
Jennings E. Taylor ◽  
Jing Xu ◽  
Maria Inman

Biomass embodies tremendous potential as a renewable energy resource. According to the biomass thermal Energy Council (BTEC), biomass energy is renewable, carbon neutral, domestic and technologically mature. In addition, the low cost per BTU of wood chips and pellets relative to fossil fuels makes biomass an attractive thermal energy source. Furthermore, ~7% of global energy consumption comprises small-scale biomass combustion, representing a tremendous market for technologies that facilitate enhanced biomass utilization. However, a major challenge associated with utilization of biomass is its combustion behavior. The moisture content, chemical composition, and combustion efficiency varies depending on the source of biomass. Small scale biomass combustors, which for cost reasons are often constructed of mild or low-alloy steels, during operation are subjected to corrosive environments that include alkali halides (borne, e.g., by fly ash particulates), mineral/halogen acids and water; as well as various others such as sulfur and nitrogen oxides. There is a need to create more efficient, longer lasting, cleaner, and cost effective cookstoves for use in burning biomaterials. The materials used for cookstoves must improve burning efficiency, must be able operate at higher temperatures, and should be low cost material systems to durably perform in the corrosive environments. Within this context, Faraday Technology is working on developing low cost and high value corrosion-resistant alloy coatings for existing bio-combustors or lower cost steels with the goal of increasing their functional lifetime, while reducing the component cost. The manufacturing process involves electrodeposition of binary/ternary/quaternary alloys consisting of [Ni/Co]-Cr-[Mo/Fe] onto a low cost substrate and subsequent accelerated high temperature corrosion evaluation. A wide array of electrolytes and processing parameters were evaluated in order to understand these effects on the deposit composition, structure, and high-temperature corrosion resistance properties towards the goal of developing an ideal alloy coating. Specifically, 60 wt% Ni – 40 wt% Cr (NiCr) binary and 25 wt% Ni – 20 wt% Cr – 55 wt% Co (NiCoCr) ternary alloy coatings demonstrated enhanced corrosion resistance when exposed to an aggressive environment (~700°C, 1000 hr, coating surface salted with ~3 mg/cm2 every 100 hours). When compared to the SS base material the NiCr and NiCoCr alloy coatings exhibited a 70% lower weight loss and 3.4 times lifetime improvement over its base material.


2012 ◽  
Vol 323-325 ◽  
pp. 301-307
Author(s):  
B. Pelic ◽  
D. Rafaja ◽  
Patrick J. Masset ◽  
H.J. Seifert ◽  
L. Bortolotto ◽  
...  

γ-TiAl intermetallics are attractive materials for high-temperature structural applications in the aerospace and automobile industries. However, they show environmental embrittlement at elevated temperatures that is mainly related to their low high-temperature corrosion resistance. One way how to improve the high-temperature corrosion resistance is the deposition of protective coatings on the surface of the base material. In this study, samples of a Ti-Al alloy with the chemical composition Ti-48Al-2Cr-2Nb (at.%) were covered by physically vapour deposited (PVD), by metalorganic chemically vapour deposited (MOCVD) and by high-velocity oxy-fuel (HVOF) sprayed coatings. All coatings were based on the Ti-Al alloys and contained different amounts of alloying elements. The corrosion experiments were performed in molten salts containing 75 wt.% Na2SO4and 25 wt.% NaCl at 850°C up to 336 h. Both, PVD and CVD protected coatings reduced the changes in the mass of the samples over the corrosion time. Still, the formation of TiO2could not be avoided, as it was confirmed by glancing-angle X-ray diffraction experiments.


Alloy Digest ◽  
1964 ◽  
Vol 13 (5) ◽  

Abstract Unitemp-HX is a nickel-base material recommended for high temperature applications. It has outstanding oxidation resistance at high temperatures under most operating conditions, and good high-temperature strength. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness and creep. It also includes information on low and high temperature performance, and corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: Ni-91. Producer or source: Universal Cyclops Steel Corporation.


Alloy Digest ◽  
1972 ◽  
Vol 21 (10) ◽  

Abstract INCONEL ALLOY 671 is a nickel-chromium alloy having excellent resistance to high-temperature corrosion. This datasheet provides information on composition, physical properties, hardness, and tensile properties as well as creep. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: Ni-180. Producer or source: Huntington Alloy Products Division, An INCO Company.


Alloy Digest ◽  
1982 ◽  
Vol 31 (6) ◽  

Abstract Type HN is an iron-chromium-nickel alloy containing sufficient chromium for good high-temperature corrosion resistance and with nickel content in excess of the chromium. This alloy has properties somewhat similar to the more widely used ACI Type HT alloy but with better ductility. Type HN is used for highly stressed components in the 1800-2000 F temperature range. It is used in the aircraft, automotive, petroleum, petrochemical and power industries for a wide range of components and parts. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as creep. It also includes information on high temperature performance and corrosion resistance as well as casting, heat treating, machining, and joining. Filing Code: SS-410. Producer or source: Various stainless steel casting companies.


Author(s):  
T. Sand ◽  
A. Edgren ◽  
C. Geers ◽  
V. Asokan ◽  
J. Eklund ◽  
...  

AbstractA new approach to reduce the chromium and aluminium concentrations in FeCrAl alloys without significantly impairing corrosion resistance is to alloy with 1–2 wt.% silicon. This paper investigates the “silicon effect” on oxidation by comparing the oxidation behavior and scale microstructure of two FeCrAl alloys, one alloyed with silicon and the other not, in dry and wet air at 600 °C and 800 °C. Both alloys formed thin protective oxide scales and the Cr-evaporation rates were small. In wet air at 800 °C the Si-alloyed FeCrAl formed an oxide scale containing mullite and tridymite together with α- and γ-alumina. It is suggested that the reported improvement of the corrosion resistance of Al- and Cr-lean FeCrAl’s by silicon alloying is caused by the appearance of Si-rich phases in the scale.


2018 ◽  
Vol 12 (2) ◽  
pp. 13-23 ◽  
Author(s):  
Gábor Nagy ◽  
Alexandra Takács ◽  
András Arnold Kállay ◽  
Dóra Mentes

One of the possible utilisation methods for organic wastes is anaerobe decomposition (fermentation). The main product of this process is biogas which is usually used for energy purposes due to its composition (mainly methane and carbon dioxide). The residual solid material after fermentation can be used as soil conditioner. Lab-scale fermentation can be carried out using the “VDI 4630 – Fermentation of organic materials Characterisation of the substrate, sampling, collection of material data, fermentation tests” standard. Based on the conditions described in the standard, a small-scale low-budget reactor system were prepared. The temperature during the holding time was controlled with water bath and the gas production was determined with fluid displacement method. A peristaltic pump was used for the recirculation of the gas to mix the base material. Furthermore, the temperatures of the environment, the water baths and the inside of each reactor was automatically registered on a data collector.


2016 ◽  
Author(s):  
Mitchell Shinn ◽  
Karthik Nithyanandam ◽  
Amey Barde ◽  
Richard Wirz

Currently, concentrated solar power (CSP) plants utilize thermal energy storage (TES) in order to store excess energy so that it can later be dispatched during periods of intermittency or during times of high energy demand. Elemental sulfur is a promising candidate storage fluid for high temperature TES systems due to its high thermal mass, moderate vapor pressure, high thermal stability, and low cost. The objective of this paper is to investigate the behavior of encapsulated sulfur in a shell and tube configuration. An experimentally validated, transient, two-dimensional numerical model of the shell and tube TES system is presented. Initial results from both experimental and numerical analysis show high heat transfer performance of sulfur. The numerical model is then used to analyze the dynamic response of the elemental sulfur based TES system for multiple charging and discharging cycles. A sensitivity analysis is performed to analyze the effect of geometry (system length), cutoff temperature, and heat transfer fluid on the overall utilization of energy stored within this system. Overall, this paper demonstrates a systematic parametric study of a novel low cost, high performance TES system based on elemental sulfur as the storage fluid that can be utilized for different high temperature applications.


Sign in / Sign up

Export Citation Format

Share Document