scholarly journals Corrosion Mitigation and Increased Discharge Capacity in Aqueous Processed Thick Cathodes using Phosphoric Acid Additives

2020 ◽  
Author(s):  
Alexander Kukay ◽  
Ritu Sahore ◽  
Anand Parejiya ◽  
W. B. Hawley ◽  
Jianlin Li ◽  
...  

Aqueous processed cathodes for lithium-ion batteries are favorable for both cost and environmental reasons; however, these electrodes still face significant problems with increasing areal capacities (i.e. thickness). Highly basic slurry conditions (pH in excess of 12) corrode the current collector surface and evolve hydrogen gas. Consequently, bubbling at the electrode interface causes substantial damage to the dried electrode. As the loading of these electrodes is increased, damage becomes severe and results in lack of adhesion and cohesion. Here introduction of phosphoric acid to combat the rise in pH and suppress the corrosion at the current collector surface is investigated. Phosphoric acid was added in increments of 0.5, 1.0, and 1.5 wt% and the subsequent effects on slurry rheology, particle size, adhesion, and electrochemical cycling were investigated. A technique is reported for obtaining thick (6-8 mAh/cm2) cathodes that exhibit reduced surface cracking and improved rate performance as compared to control samples.

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Boqiao Li ◽  
Wei Zhao ◽  
Chen Zhang ◽  
Zhe Yang ◽  
Fei Dang ◽  
...  

Owing to high safety, low cost, nontoxicity, and environment-friendly features, LiFePO4 that is served as the lithium ion battery cathode has attracted much attention. In this paper, a novel 3D LiFePO4@C core-shell configuration anchored on carbon cloth is synthesized by a facile impregnation sol-gel approach. Through the binder-free structure, the active materials can be directly combined with the current collector to avoid the falling of active materials and achieve the high-efficiency lithium ion and electron transfer. The traditional slurry-casting technique is applicable for pasting LiFePO4@C powders onto the 2D aluminum foil current collector (LFP-Al). By contrast, LFP-CC exhibits a reversible specific capacity of 140 mAh·g-1 and 93.3 mAh·g-1 at 1C and 10C, respectively. After 500 cycles, no obvious capacity decay can be observed at 10C while keeping the coulombic efficiency above 98%. Because of its excellent capacity, high-rate performance, stable electrochemical performance, and good flexibility, this material has great potentials of developing the next-generation high-rate performance lithium ion battery and preparing the binder-free flexible cathode.


2015 ◽  
Vol 68 (12) ◽  
pp. 1911 ◽  
Author(s):  
Tao Dong ◽  
Suojiang Zhang ◽  
Liang Zhang ◽  
Shimou Chen ◽  
Xingmei Lu

Addressing capacity fading during electrochemical cycling is one of the most challenging issues of lithium-ion batteries based on LiMn2O4. Accordingly, in this work, an ester-functionalized ionic liquid, N-methylpyrrolidinium-N-acetate bis(trifluoromethylsulfonyl) imide ([MMEPyr][TFSI]), was designed as an additive to the electrolyte employed for Li/LiMn2O4 batteries to improve their electrochemical performance. A systematic comparative study was carried out using the LiTFSI-based electrolyte with and without [MMEPyr][TFSI] additive. After 100 cycles, the Li/LiMn2O4 half-cells retained 94 % of their initial discharge capacity in the electrolyte containing 10 wt-% [MMEPyr][TFSI]. However, the cycling capacity of the half-cells in the electrolyte without [MMEPyr][TFSI] decreased considerably to ~21 mAh g–1 within the first 10 cycles. One of the main reasons for the decrease is the stabilization of the Al current collector by the [MMEPyr][TFSI] additive, as demonstrated by scanning electron microscopy, cyclic voltammetry, and Fourier transform infrared spectroscopy. Moreover, the Li/LiMn2O4 cells in the electrolyte containing [MMEPyr][TFSI] displayed high-rate performance, whereby ~90 % of the cell initial discharge capacity was retained at 2.5C.


2019 ◽  
Vol 48 (11) ◽  
pp. 7543-7550 ◽  
Author(s):  
Meiqing Guo ◽  
Weijia Meng ◽  
Xiaogang Zhang ◽  
Zhongchao Bai ◽  
Genwei Wang ◽  
...  

Author(s):  
Truptimayee Acharya ◽  
Anshuman Chaupatnaik ◽  
Anil Pathak ◽  
Amritendu Roy ◽  
Soobhankar Pati

Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1672
Author(s):  
Shih-Chieh Hsu ◽  
Tzu-Ten Huang ◽  
Yen-Ju Wu ◽  
Cheng-Zhang Lu ◽  
Huei Chu Weng ◽  
...  

Carbon-coated Li4Ti5O12 (LTO) has been prepared using polyimide (PI) as a carbon source via the thermal imidization of polyamic acid (PAA) followed by a carbonization process. In this study, the PI with different structures based on pyromellitic dianhydride (PMDA), 4,4′-oxydianiline (ODA), and p-phenylenediamine (p-PDA) moieties have been synthesized. The effect of the PI structure on the electrochemical performance of the carbon-coated LTO has been investigated. The results indicate that the molecular arrangement of PI can be improved when the rigid p-PDA units are introduced into the PI backbone. The carbons derived from the p-PDA-based PI show a more regular graphite structure with fewer defects and higher conductivity. As a result, the carbon-coated LTO exhibits a better rate performance with a discharge capacity of 137.5 mAh/g at 20 C, which is almost 1.5 times larger than that of bare LTO (94.4 mAh/g).


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1946 ◽  
Author(s):  
Hae-Jun Kwon ◽  
Sang-Wook Woo ◽  
Yong-Ju Lee ◽  
Je-Young Kim ◽  
Sung-Man Lee

The electrochemical performance of modified natural graphite (MNG) and artificial graphite (AG) was investigated as a function of electrode density ranging from 1.55 to 1.7 g∙cm−3. The best performance was obtained at 1.55 g∙cm−3 and 1.60 g∙cm−3 for the AG and MNG electrodes, respectively. Both AG, at a density of 1.55 g∙cm−3, and MNG, at a density of 1.60 g∙cm−3, showed quite similar performance with regard to cycling stability and coulombic efficiency during cycling at 30 and 45 °C, while the MNG electrodes at a density of 1.60 g∙cm−3 and 1.7 g∙cm−3 showed better rate performance than the AG electrodes at a density of 1.55 g∙cm−3. The superior rate capability of MNG electrodes can be explained by the following effects: first, their spherical morphology and higher electrode density led to enhanced electrical conductivity. Second, for the MNG sample, favorable electrode tortuosity was retained and thus Li+ transport in the electrode pore was not significantly affected, even at high electrode densities of 1.60 g∙cm−3 and 1.7 g∙cm−3. MNG electrodes also exhibited a similar electrochemical swelling behavior to the AG electrodes.


RSC Advances ◽  
2016 ◽  
Vol 6 (49) ◽  
pp. 43551-43555 ◽  
Author(s):  
Mengmeng Zhen ◽  
Xiao Zhang ◽  
Lu Liu

Novel bi-component-active hierarchical ZnO/ZnCo2O4 nanosheets with mesostructures presented a good high-rate performance for lithium ion batteries.


Sign in / Sign up

Export Citation Format

Share Document