scholarly journals Using two-dimensional ultrasound imaging to examine venous pressure

2020 ◽  
Vol 44 (2) ◽  
pp. 262-267
Author(s):  
Christopher D. Johnson ◽  
Sean M. Roe ◽  
Etain A. Tansey

Ultrasound imaging is being used increasingly to aid in the teaching of human physiology and anatomy. Here we describe how its use can be integrated into the teaching of concepts surrounding venous circulation, specifically 1) venous valves and the muscle pump, 2) the effects of hydrostatic pressure on venous pressure, and 3) central venous pressure. The imaging procedures described are relatively simple but add a dimension that helps deliver the teaching points clearly and is enjoyable for students. They also aid in the link of basic physiology to clinical aspects of venous circulatory physiology.

1973 ◽  
Vol 30 (01) ◽  
pp. 178-190 ◽  
Author(s):  
Itsuro Kobayashi ◽  
Paul Didisheim

SummaryADP, AMP, or ATP was injected rapidly intravenously in rats. ADP injection resulted in the f olio wing transient changes: a drop in platelet count, a rise in central venous pressure, a fall in carotid arterial PO2, bradycardia, arrhythmia, flutter-fibrillation, and arterial hypotension. AMP and ATP produced some of these same effects; but except for hypotension, their frequency and severity Avere much less than those following ADP.Prior intravenous administration of acetylsalicylic acid or pyridinolcarbamate, two inhibitors of the second wave of ADP-induced platelet aggregation in vitro, significantly reduced the frequency and severity of all the above ADP-induced changes except hypotension. These observations suggest that many of the changes (except hypotension) observed to follow ADP injection are produced by platelet aggregates which lodge transiently in various microcirculatory beds then rapidly disaggregate and recirculate.


2016 ◽  
Vol 25 (4) ◽  
pp. 525-532 ◽  
Author(s):  
Monica Lupșor-Platon ◽  
Radu Badea ◽  
Mirela Gersak ◽  
Anca Maniu ◽  
Ioana Rusu ◽  
...  

There has been great interest in the development of non-invasive techniques for the diagnosis of liver fibrosis in chronic liver diseases, including ultrasound elastographic methods. Some of these methods have already been adequately studied for the non-invasive assessment of diffuse liver diseases. Others, however, such as two-dimensional Shear Wave Elastography (SWE), of more recent appearance, have yet to be validated and some aspects are for the moment incompletely elucidated. This review discusses some of the aspects related to two-dimensional SWE: the examination technique, the examination performance indicators, intra and interobserver agreement and clinical applications. Recommendations for a high-quality examination technique are formulated. Key words:  –  –  – Two-dimensional Shear Wave Elastography. Abbreviations: 2D- SWE: Two-dimensional Shear Wave Elastography; 3D- SWE: Three-dimensional Shear Wave Elastography; AUROC: area under the receiver operating characteristic curves; ARFI Acoustic Radiation Force Impulse Elastography; EFSUMB: European Federation of Societies for Ultrasound in Medicine and Biology; HVPG: hepatic venous pressure gradient; LS: liver stiffness; LR: likelihood ratio; NPV: negative predictive value; PPV: positive predictive value; ROI: region of interest; RT-E: Real Time-Elastography; Se: sensitivity; Sp: specificity; TE: Transient Elastography; US: ultrasound; VM: valid measurement; E: Young’s modulus


Sign in / Sign up

Export Citation Format

Share Document