Essential environmental cues from the satellite cell niche: optimizing proliferation and differentiation

2009 ◽  
Vol 296 (6) ◽  
pp. C1338-C1345 ◽  
Author(s):  
K. J. M. Boonen ◽  
K. Y. Rosaria-Chak ◽  
F. P. T. Baaijens ◽  
D. W. J. van der Schaft ◽  
M. J. Post

The use of muscle progenitor cells (MPCs) for regenerative medicine has been severely compromised by their decreased proliferative and differentiative capacity after being cultured in vitro. We hypothesized the loss of pivotal niche factors to be the cause. Therefore, we investigated the proliferative and differentiative response of passage 0 murine MPCs to varying substrate elasticities and protein coatings and found that proliferation was influenced only by elasticity, whereas differentiation was influenced by both elasticity and protein coating. A stiffness of 21 kPa optimally increased the proliferation of MPCs. Regarding differentiation, we demonstrated that fusion of MPCs into myotubes takes place regardless of elasticity. However, ongoing maturation with cross-striations and contractions occurred only on elasticities higher than 3 kPa. Furthermore, maturation was fastest on poly-d-lysine and laminin coatings.

2012 ◽  
Vol 23 (3) ◽  
pp. 469-481 ◽  
Author(s):  
Dominique Bröhl ◽  
Elena Vasyutina ◽  
Maciej T. Czajkowski ◽  
Joscha Griger ◽  
Claudia Rassek ◽  
...  

Author(s):  
Omika Katoch ◽  
Mrinalini Tiwari ◽  
Namita Kalra ◽  
Paban K. Agrawala

AbstractDiallyl sulphide (DAS), the pungent component of garlic, is known to have several medicinal properties and has recently been shown to have radiomitigative properties. The present study was performed to better understand its mode of action in rendering radiomitigation. Evaluation of the colonogenic ability of hematopoietic progenitor cells (HPCs) on methocult media, proliferation and differentiation of hematopoietic stem cells (HSCs), and transplantation of stem cells were performed. The supporting tissue of HSCs was also evaluated by examining the histology of bone marrow and in vitro colony-forming unit–fibroblast (CFU-F) count. Alterations in the levels of IL-5, IL-6 and COX-2 were studied as a function of radiation or DAS treatment. It was observed that an increase in proliferation and differentiation of hematopoietic stem and progenitor cells occurred by postirradiation DAS administration. It also resulted in increased circulating and bone marrow homing of transplanted stem cells. Enhancement in bone marrow cellularity, CFU-F count, and cytokine IL-5 level were also evident. All those actions of DAS that could possibly add to its radiomitigative potential and can be attributed to its HDAC inhibitory properties, as was observed by the reversal radiation induced increase in histone acetylation.


FEBS Journal ◽  
2018 ◽  
Vol 285 (11) ◽  
pp. 1973-1984 ◽  
Author(s):  
Luiz Augusto Perandini ◽  
Patricia Chimin ◽  
Diego da Silva Lutkemeyer ◽  
Niels Olsen Saraiva Câmara

Author(s):  
Rémi Mounier ◽  
Fabrice Chrétien ◽  
Bénédicte Chazaud

2018 ◽  
Vol 15 (145) ◽  
pp. 20180388 ◽  
Author(s):  
Hannah Donnelly ◽  
Manuel Salmeron-Sanchez ◽  
Matthew J. Dalby

Mesenchymal stem cells, characterized by their ability to differentiate into skeletal tissues and self-renew, hold great promise for both regenerative medicine and novel therapeutic discovery. However, their regenerative capacity is retained only when in contact with their specialized microenvironment, termed the stem cell niche . Niches provide structural and functional cues that are both biochemical and biophysical, stem cells integrate this complex array of signals with intrinsic regulatory networks to meet physiological demands. Although, some of these regulatory mechanisms remain poorly understood or difficult to harness with traditional culture systems. Biomaterial strategies are being developed that aim to recapitulate stem cell niches, by engineering microenvironments with physiological-like niche properties that aim to elucidate stem cell-regulatory mechanisms, and to harness their regenerative capacity in vitro . In the future, engineered niches will prove important tools for both regenerative medicine and therapeutic discoveries.


2019 ◽  
Vol 20 (17) ◽  
pp. 4083
Author(s):  
Xing Yu Li ◽  
Shang Ying Wu ◽  
Po Sing Leung

Pancreatic progenitor cells (PPCs) are the primary source for all pancreatic cells, including beta-cells, and thus the proliferation and differentiation of PPCs into islet-like cell clusters (ICCs) opens an avenue to providing transplantable islets for diabetic patients. Meanwhile, mesenchymal stem cells (MSCs) can enhance the development and function of different cell types of interest, but their role on PPCs remains unknown. We aimed to explore the mechanism-of-action whereby MSCs induce the in vitro and in vivo PPC/ICC development by means of our established co-culture system of human PPCs with human fetal bone marrow-derived MSCs. We examined the effect of MSC-conditioned medium on PPC proliferation and survival. Meanwhile, we studied the effect of MSC co-culture enhanced PPC/ICC function in vitro and in vivo co-/transplantation. Furthermore, we identified IGF1 as a critical factor responsible for the MSC effects on PPC differentiation and proliferation via IGF1-PI3K/Akt and IGF1-MEK/ERK1/2, respectively. In conclusion, our data indicate that MSCs stimulated the differentiation and proliferation of human PPCs via IGF1 signaling, and more importantly, promoted the in vivo engraftment function of ICCs. Taken together, our protocol may provide a mechanism-driven basis for the proliferation and differentiation of PPCs into clinically transplantable islets.


Cells ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1509 ◽  
Author(s):  
Nazma F. Ilahibaks ◽  
Zhiyong Lei ◽  
Emma A. Mol ◽  
Anil K. Deshantri ◽  
Linglei Jiang ◽  
...  

Extracellular vesicles (EVs) are mediators of intercellular communication by transferring functional biomolecules from their originating cells to recipient cells. This intrinsic ability has gained EVs increased scientific interest in their use as a direct therapeutic in the field of regenerative medicine or as vehicles for drug delivery. EVs derived from stem cells or progenitor cells can act as paracrine mediators to promote repair and regeneration of damaged tissues. Despite substantial research efforts into EVs for various applications, their use remains limited by the lack of highly efficient and scalable production methods. Here, we present the biofabrication of cell-derived nanovesicles (NVs) as a scalable, efficient, and cost-effective production alternative to EVs. We demonstrate that NVs have a comparable size and morphology as EVs, but lack standard EV (surface) markers. Additionally, in vitro uptake experiments show that human fetal cardiac fibroblast, endothelial cells, and cardiomyocyte progenitor cells internalize NVs. We observed that cardiac progenitor cell-derived NVs and EVs are capable of activating mitogen-activated protein kinase 1/2 (MAPK1/2)-extracellular signal-regulated kinase, and that both NVs and EVs derived from A431 and HEK293 cells can functionally deliver Cre-recombinase mRNA or protein to other cells. These observations indicate that NVs may have similar functional properties as EVs. Therefore, NVs have the potential to be applied for therapeutic delivery and regenerative medicine purposes.


Sign in / Sign up

Export Citation Format

Share Document