scholarly journals Biofabrication of Cell-Derived Nanovesicles: A Potential Alternative to Extracellular Vesicles for Regenerative Medicine

Cells ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1509 ◽  
Author(s):  
Nazma F. Ilahibaks ◽  
Zhiyong Lei ◽  
Emma A. Mol ◽  
Anil K. Deshantri ◽  
Linglei Jiang ◽  
...  

Extracellular vesicles (EVs) are mediators of intercellular communication by transferring functional biomolecules from their originating cells to recipient cells. This intrinsic ability has gained EVs increased scientific interest in their use as a direct therapeutic in the field of regenerative medicine or as vehicles for drug delivery. EVs derived from stem cells or progenitor cells can act as paracrine mediators to promote repair and regeneration of damaged tissues. Despite substantial research efforts into EVs for various applications, their use remains limited by the lack of highly efficient and scalable production methods. Here, we present the biofabrication of cell-derived nanovesicles (NVs) as a scalable, efficient, and cost-effective production alternative to EVs. We demonstrate that NVs have a comparable size and morphology as EVs, but lack standard EV (surface) markers. Additionally, in vitro uptake experiments show that human fetal cardiac fibroblast, endothelial cells, and cardiomyocyte progenitor cells internalize NVs. We observed that cardiac progenitor cell-derived NVs and EVs are capable of activating mitogen-activated protein kinase 1/2 (MAPK1/2)-extracellular signal-regulated kinase, and that both NVs and EVs derived from A431 and HEK293 cells can functionally deliver Cre-recombinase mRNA or protein to other cells. These observations indicate that NVs may have similar functional properties as EVs. Therefore, NVs have the potential to be applied for therapeutic delivery and regenerative medicine purposes.

2005 ◽  
Vol 25 (2) ◽  
pp. 854-864 ◽  
Author(s):  
Sandrine Marchetti ◽  
Clotilde Gimond ◽  
Jean-Claude Chambard ◽  
Thomas Touboul ◽  
Danièle Roux ◽  
...  

ABSTRACT Mitogen-activated protein (MAP) kinase phosphatases (MKPs) are dual-specificity phosphatases that dephosphorylate phosphothreonine and phosphotyrosine residues within MAP kinases. Here, we describe a novel posttranslational mechanism for regulating MKP-3/Pyst1/DUSP6, a member of the MKP family that is highly specific for extracellular signal-regulated kinase 1 and 2 (ERK1/2) inactivation. Using a fibroblast model in which the expression of either MKP-3 or a more stable MKP-3-green fluorescent protein (GFP) chimera was induced by tetracycline, we found that serum induces the phosphorylation of MKP-3 and its subsequent degradation by the proteasome in a MEK1 and MEK2 (MEK1/2)-ERK1/2-dependent manner. In vitro phosphorylation assays using glutathione S-transferase (GST)-MKP-3 fusion proteins indicated that ERK2 could phosphorylate MKP-3 on serines 159 and 197. Tetracycline-inducible cell clones expressing either single or double serine mutants of MKP-3 or MKP-3-GFP confirmed that these two sites are targeted by the MEK1/2-ERK1/2 module in vivo. Double serine mutants of MKP-3 or MKP-3-GFP were more efficiently protected from degradation than single mutants or wild-type MKP-3, indicating that phosphorylation of either serine by ERK1/2 enhances proteasomal degradation of MKP-3. Hence, double mutation caused a threefold increase in the half-life of MKP-3. Finally, we show that the phosphorylation of MKP-3 has no effect on its catalytic activity. Thus, ERK1/2 exert a positive feedback loop on their own activity by promoting the degradation of MKP-3, one of their major inactivators in the cytosol, a situation opposite to that described for the nuclear phosphatase MKP-1.


2019 ◽  
Vol 14 (1) ◽  
pp. 133-140
Author(s):  
Rui-Xia Chang ◽  
Ai-Ling Cui ◽  
Lu Dong ◽  
Su-Ping Guan ◽  
Ling-Yan Jiang ◽  
...  

AbstractRAS protein activator like-1 (RASAL1) exists in numerous human tissues and has been commonly demonstrated to act as a tumor suppressor in several cancers. This study aimed to identify the functional characteristics of RASAL1 in ovarian adenocarcinoma and a potential mechanism of action. We analyzed RASAL1 gene expression in ovarian adenocarcinoma samples and normal samples gained from the GEO and Oncomine databases respectively. Then the relationship between RASAL1 expression and overall survival (OS) was assessed using the Kaplan-Meier method. Furthermore, the biological effect of RASAL1 in ovarian adenocarcinoma cell lines was assessed by Quantitative real time-PCR (qRT-PCR), Cell Counting Kit-8 (CCK-8), western blot, wound healing and transwell assay. The statistical analysis showed patients with higher RASAL1 expression correlated with worse OS. The in vitro assays suggested knockdown of RASAL1 could inhibit cell proliferation, cell invasion and migration of ovarian adenocarcinoma. Moreover, the key proteins in the mitogen-activated protein kinase/extracellular signal-regulated kinase (MEK/ERK) signaling pathway were also decreased in ovarian adenocarcinoma cells with RASAL1 silencing. These findings provide promising evidence that RASAL1 may be not only a powerful biomarker but also an effective therapeutic target of ovarian adenocarcinoma.


2005 ◽  
Vol 25 (18) ◽  
pp. 7940-7952 ◽  
Author(s):  
Monideepa Roy ◽  
Zhigang Li ◽  
David B. Sacks

ABSTRACT IQGAP1 modulates many cellular functions such as cell-cell adhesion, transcription, cytoskeletal architecture, and selected signaling pathways. We previously documented that IQGAP1 binds extracellular signal-regulated kinase (ERK) 2 and regulates growth factor-stimulated ERK activity. Here we show that MEK, the molecule immediately upstream of ERK in the Ras/mitogen-activated protein (MAP) kinase signaling cascade, also interacts directly with IQGAP1. Both MEK1 and MEK2 bound IQGAP1 in vitro and coimmunoprecipitated with IQGAP1. The addition of ERK2 enhanced by fourfold the in vitro interaction of MEK2 with IQGAP1 without altering binding of MEK1. Similarly, ERK1 promoted MEK binding to IQGAP1, but either MEK protein altered the association between IQGAP1 and ERK. Epidermal growth factor (EGF) differentially regulated binding, enhancing MEK1 interaction while reducing MEK2 binding to IQGAP1. In addition, both knockdown and overexpression of IQGAP1 reduced EGF-stimulated activation of MEK and ERK. Analyses with selective IQGAP1 mutant constructs indicated that MEK binding is crucial for IQGAP1 to modulate EGF activation of ERK. Our data strongly suggest that IQGAP1 functions as a molecular scaffold in the Ras/MAP kinase pathway.


2006 ◽  
Vol 399 (2) ◽  
pp. 265-273 ◽  
Author(s):  
Simon Morton ◽  
Huei-Ting Yang ◽  
Ntsane Moleleki ◽  
David G. Campbell ◽  
Philip Cohen ◽  
...  

A protein in RAW 264.7 macrophages, which became phosphorylated in response to LPS (lipopolysaccharide), was identified as the RNA-binding protein called DAZAP1 [DAZ (deleted in azoospermia)-associated protein 1]. The phosphorylation of this protein was prevented by specific inhibition of MKK1 [MAPK (mitogen-activated protein kinase) kinase 1], indicating that it was phosphorylated via the classical MAPK cascade. Further experiments showed that DAZAP1 was phosphorylated stoichiometrically in vitro by ERK2 (extracellular-signal-regulated protein kinase 2) at two Thr-Pro sequences (Thr269 and Thr315), and that both sites became phosphorylated in HEK-293 (human embryonic kidney 293) cells in response to PMA or EGF (epidermal growth factor), or RAW 264.7 macrophages in response to LPS. Phosphorylation induced by each stimulus was prevented by two structurally distinct inhibitors of MKK1 (PD184352 and U0126), demonstrating that DAZAP1 is a physiological substrate for ERK1/ERK2. The mutation of Thr269 and Thr315 to aspartate or the phosphorylation of these residues caused DAZAP1 to dissociate from its binding partner DAZ. DAZ interacts with PABP [poly(A)-binding protein] and thereby stimulates the translation of mRNAs containing short poly(A) tails [Collier, Gorgoni, Loveridge, Cooke and Gray (2005) EMBO J. 24, 2656–2666]. In the present study we have shown that DAZ cannot bind simultaneously to DAZAP1 and PABP, and suggest that the phosphorylation-induced dissociation of DAZ and DAZAP1 may allow the former to stimulate translation by interacting with PABP.


2001 ◽  
Vol 280 (2) ◽  
pp. F291-F302 ◽  
Author(s):  
Olga Kifor ◽  
R. John MacLeod ◽  
Ruben Diaz ◽  
Mei Bai ◽  
Toru Yamaguchi ◽  
...  

Regulation of the extracellular signal-regulated kinase 1 and 2 (ERK1/2) pathway by the extracellular calcium (Cao 2+)-sensing receptor (CaR) was investigated in bovine parathyroid and CaR-transfected human embryonic kidney (HEKCaR) cells. Elevating Cao 2+ or adding the selective CaR activator NPS R-467 elicited rapid, dose-dependent phosphorylation of ERK1/2. These phosphorylations were attenuated by pretreatment with pertussis toxin (PTX) or by treatment with the phosphotyrosine kinase (PTK) inhibitors genistein and herbimycin, the phosphatidylinositol-specific phospholipase C (PI-PLC) inhibitor U-73122, or the protein kinase C (PKC) inhibitor GF109203X and were enhanced by the PKC activator phorbol 12-myristate 13-acetate. Combined treatment with PTX and inhibitors of both PKC and PTK nearly abolished high Cao 2+-evoked ERK1/2 activation in HEKCaR cells, demonstrating CaR-mediated coupling via both Gq and Gi. High Cao 2+ increased serine phosphorylation of the 85-kDa cytosolic phospholipase A2(cPLA2) in both parathyroid and HEKCaR cells. The selective mitogen-activated protein kinase (MAPK) inhibitor PD98059 abolished high-Cao 2+-induced ERK1/2 activation and reduced cPLA2 phosphorylation in both cell types, documenting MAPK's role in cPLA2 activation. Thus our data suggest that the CaR activates MAPK through PKC, presumably through Gq/11-mediated activation of PI-PLC, as well as through Gi- and PTK-dependent pathway(s) in bovine parathyroid and HEKCaR cells and indicate the importance of MAPK in cPLA2 activation.


2019 ◽  
Author(s):  
Aroon S. Karra ◽  
Aileen M. Klein ◽  
Svetlana Earnest ◽  
Steve Stippec ◽  
Chonlarat Wichaidit ◽  
...  

AbstractBackgroundThe Ras-Raf-MEK-ERK signaling pathway is essential for proper development and homeostatic regulation in eukaryotic cells and underlies progression of several types of cancer. Many pathway functions are performed by extracellular signal-regulated kinase (ERK)1 and 2 (ERK1/2), serine/threonine protein kinases of the mitogen-activated protein kinase (MAPK) family that interact with a large number of substrates and are highly active in the nucleus.ResultsWe identified the epigenetic regulator CXXC-finger protein 1 (CFP1) as a protein that interacts with ERK2 on chromatin. CFP1 is involved in multiple aspects of chromatin regulation, including histone methylation and DNA methylation. Here, we demonstrate the overlapping roles for ERK1/2 and CFP1 in regulation of immediate early gene (IEG) induction. Our work suggests multiple modes of co-regulation and demonstrates that CFP1 is required for an optimal signal-dependent response. We also show that CFP1 is an ERK2 substrate in vitro and identify several phosphorylation sites. Furthermore, we provide evidence that Su(var)3-9, Enhancer-of-zeste and Trithorax (Set)1b, a CFP1-interacting histone methylase, is phosphorylated by ERK2 and is regulated by CFP1.ConclusionOur work highlights ERK1/2 interactions with chromatin regulators that contribute to MAPK signaling diversity in the nucleus.


2012 ◽  
Vol 40 (1) ◽  
pp. 235-239 ◽  
Author(s):  
Ahmed Lawan ◽  
Emma Torrance ◽  
Sameer Al-Harthi ◽  
Muhannad Shweash ◽  
Sulaiman Alnasser ◽  
...  

The MKPs (mitogen-activated protein kinase phosphatases) are a family of at least ten DUSPs (dual-specificity phosphatases) which function to terminate the activity of the MAPKs (mitogen-activated protein kinases). Several members have already been demonstrated to have distinct roles in immune function, cancer, fetal development and metabolic disorders. One DUSP of renewed interest is the inducible nuclear phosphatase MKP-2, which dephosphorylates both ERK (extracellular-signal-regulated kinase) and JNK (c-Jun N-terminal kinase) in vitro. Recently, the understanding of MKP-2 function has been advanced due to the development of mouse knockout models, which has resulted in the discovery of novel roles for MKP-2 in the regulation of sepsis, infection and cell-cycle progression that are distinct from those of other DUSPs. However, many functions for MKP-2 still await to be characterized.


2014 ◽  
Vol 42 (4) ◽  
pp. 776-783 ◽  
Author(s):  
Matthew J. Sale ◽  
Simon J. Cook

Recent clinical data with BRAF and MEK1/2 [MAPK (mitogen-activated protein kinase)/ERK (extracellular-signal-regulated kinase) kinase 1/2] inhibitors have demonstrated the remarkable potential of targeting the RAF–MEK1/2–ERK1/2 signalling cascade for the treatment of certain cancers. Despite these advances, however, only a subset of patients respond to these agents in the first instance, and, of those that do, acquired resistance invariably develops after several months. Studies in vitro have identified various mechanisms that can underpin intrinsic and acquired resistance to MEK1/2 inhibitors, and these frequently recapitulate those observed clinically. In the present article, we review these mechanisms and also discuss recent advances in our understanding of how MEK1/2 inhibitor activity is influenced by pathway feedback.


1998 ◽  
Vol 336 (3) ◽  
pp. 599-609 ◽  
Author(s):  
Po-Ying CHAN-HUI ◽  
Robert WEAVER

The mitogen-activated protein kinase (MAPK) cascades represent one of the important signalling mechanisms in response to environmental stimuli. We report the identification of a human MAPK kinase kinase, MAPKKK4, via sequence similarity with other MAPKKKs. When truncated MAPKKK4 (ΔMAPKKK4) was overexpressed in HEK293 cells, it was constitutively active and induced the activation of endogenous p38α, c-Jun N-terminal kinase (JNK)1/2 and extracellular signal-regulated kinase (ERK)2 in vivo. Kinase-inactive ΔMAPKKK4 partly inhibited the activation of p38α, JNK1/2 and ERK2 induced by stress, tumour necrosis factor α or epidermal growth factor, suggesting that MAPKKK4 might be physiologically involved in all three MAPK cascades. Co-expressed MAP kinase kinase (MKK)-1, MKK-4, MKK-3 and MKK-6 were activated in vivo by ΔMAPKKK4. All of the above MKKs purified from Escherichia coli were phosphorylated and activated by ΔMAPKKK4 immunoprecipitates in vitro. When expressed by lower plasmid doses, ΔMAPKKK4 preferentially activated MKK-3 and p38α in vivo. Overexpression of ΔMAPKKK4 did not activate the NF-κB pathway. Immunoprecipitation of endogenous MAPKKK4 by specific antibodies showed that MAPKKK4 was activated after the treatment of K562 cells with various stress conditions. As a broadly distributed kinase, MAPKKK4 might serve as a stress responder. MAPKKK4 is 91% identical with the recently described murine MEKK-4β and might be its human homologue. It is also identical with the recently cloned human MAP three kinase 1 except for the lack of an internal sequence homologous to the murine MEKK-4α isoform. Differences in the reported functional activities of the three kinases are discussed.


Sign in / Sign up

Export Citation Format

Share Document