Oxidative stress-induced cell death of human oral neutrophils

2003 ◽  
Vol 284 (4) ◽  
pp. C1048-C1053 ◽  
Author(s):  
Eisuke F. Sato ◽  
Masahiro Higashino ◽  
Kazuo Ikeda ◽  
Ryotaro Wake ◽  
Mitsuyoshi Matsuo ◽  
...  

Polymorphonuclear leukocytes (PMN) play crucial roles in protecting hosts against invading microbes and in the pathogenesis of inflammatory tissue injury. Although PMN migrate into mucosal layers of digestive and respiratory tracts, only limited information is available of their fate and function in situ. We previously reported that, unlike circulating PMN (CPMN), PMN in the oral cavity spontaneously generate superoxide radical and nitric oxide (NO) in the absence of any stimuli. When cultured for 12 h under physiological conditions, oral PMN (OPMN) showed morphological changes that are characteristic of those of apoptosis. Upon agarose gel electrophoresis, nuclear DNA samples isolated from OPMN revealed ladder-like profiles characteristic of nucleosomal fragmentation.l-cysteine, reduced glutathione (GSH), and herbimycin A, a protein tyrosine kinase inhibitor, suppressed the activation of caspase-3 and apoptosis of OPMN. Neither thiourea, superoxide dismutase (SOD), nor catalase inhibited the activation of caspase-3 and apoptosis. Moreover, N-acetyl-Asp-Glu-Val-Asp-aldehyde (Ac-DEVD-CHO), inhibitor for caspase-3, inhibited the fragmentation of DNA. These results suggested that oxidative stress and/or tyrosine-kinase-dependent pathway(s) activated caspase-3 in OPMN, thereby inducing their apoptosis.

2006 ◽  
Vol 26 (9) ◽  
pp. 3478-3491 ◽  
Author(s):  
Fei Zhou ◽  
Jianjie Hu ◽  
Haiyan Ma ◽  
Marietta L. Harrison ◽  
Robert L. Geahlen

ABSTRACT The protein tyrosine kinase Syk couples the B-cell receptor (BCR) for antigen to multiple intracellular signaling pathways and also modulates cellular responses to inducers of oxidative stress in a receptor-independent fashion. In B cells, Syk is found in both the nuclear and cytoplasmic compartments but contains no recognizable nuclear localization or export signals. Through the analysis of a series of deletion mutants, we identified the presence of an unconventional shuttling sequence near the junction of the catalytic domain and the linker B region that accounts for Syk's subcellular localization. This localization is altered following prolonged engagement of the BCR, which causes Syk to be excluded from the nucleus. Nuclear exclusion requires the receptor-mediated activation of protein kinase C and new protein synthesis. Both of these processes also potentiate the activation of caspase 3 in cells in response to oxidative stress in a manner that is dependent on the localization of Syk outside of the nucleus. In contrast, restriction of Syk to the nucleus greatly diminishes the stress-induced activation of caspase 3.


1994 ◽  
Vol 72 (06) ◽  
pp. 937-941 ◽  
Author(s):  
Karim Rezaul ◽  
Shigeru Yanagi ◽  
Kiyonao Sada ◽  
Takanobu Taniguchi ◽  
Hirohei Yamamura

SummaryIt has been demonstrated that activation of platelets by platelet-activating factor (PAF) results in a dramatic increase in tyrosine phosphorylation of several cellular proteins. We report here that p72 syk is a potential candidate for the protein-tyrosine phosphorylation following PAF stimulation in porcine platelets. Immunoprecipitation kinase assay revealed that PAF stimulation resulted in a rapid activation of p72 syk which peaked at 10 s. The level of activation was found to be dose dependent and could be completely inhibited by the PAF receptor antagonist, CV3988. Phosphorylation at the tyrosine residues of p72 syk coincided with activation of yllsyk. Pretreatment of platelets with aspirin and apyrase did not affect PAF induced activation of p72 syk .Furthermore, genistein, a potent protein-tyrosine-kinase inhibitor, diminished PAF-induced p72 syk activation and Ca2+ mobilization as well as platelet aggregation. These results suggest that p72 syk may play a critical role in PAF-induced aggregation, possibly through regulation of Ca2+ mobilization.


1997 ◽  
Vol 272 (3) ◽  
pp. H1302-H1308 ◽  
Author(s):  
E. Crockett-Torabi ◽  
J. C. Fantone

Neutrophils play an important role in myocardial ischemia-reperfusion injury. Neutrophil adhesion to the vascular endothelium is one of the important early mechanisms that lead to reperfusion injury. The leukocyte adhesion molecule, L-selectin, plays a major role in the initial interaction between neutrophils and endothelial cells. Intervention aimed at blocking selectins or their associated ligands can exert cardioprotective effects. The purpose of this study was to examine the role of L-selectin in the initiation of transmembrane signaling and regulation of canine neutrophil responses. Cross-linking of canine neutrophil L-selectin using anti-L-selectin antibody induced a rapid and transient increase in intracellular Ca2+ levels and superoxide anion generation that were dependent on the extent of L-selectin cross-linking. The responses were significantly inhibited by the protein tyrosine kinase inhibitor, genistein. The results demonstrate that ligation of canine neutrophil L-selectin is coupled to intracellular signal transduction pathways and the generation of second messengers, which may independently play important regulatory roles in modulating neutrophil-endothelial cell interactions.


Biomolecules ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 703 ◽  
Author(s):  
Ahlam Alhusaini ◽  
Laila Fadda ◽  
Iman H. Hasan ◽  
Enas Zakaria ◽  
Abeer M. Alenazi ◽  
...  

Lead (Pb) is a toxic heavy metal pollutant with adverse effects on the liver and other body organs. Curcumin (CUR) is the principal curcuminoid of turmeric and possesses strong antioxidant and anti-inflammatory activities. This study explored the protective effect of CUR on Pb hepatotoxicity with an emphasis on oxidative stress, inflammation and Akt/GSK-3β signaling. Rats received lead acetate and CUR and/or ascorbic acid (AA) for seven days and samples were collected for analyses. Pb(II) induced liver injury manifested by elevated serum alanine aminotransferase (ALT), aspartate aminotransferase (AST) and lactate dehydrogenase (LDH), as well as histopathological alterations, including massive hepatocyte degeneration and increased collagen deposition. Lipid peroxidation, nitric oxide, TNF-α and DNA fragmentation were increased, whereas antioxidant defenses were diminished in the liver of Pb(II)-intoxicated rats. Pb(II) increased hepatic NF-κB and JNK phosphorylation and caspase-3 cleavage, whereas Akt and GSK-3β phosphorylation was decreased. CUR and/or AA ameliorated liver function, prevented tissue injury, and suppressed oxidative stress, DNA damage, NF-κB, JNK and caspase-3. In addition, CUR and/or AA activated Akt and inhibited GSK-3β in Pb(II)-induced rats. In conclusion, CUR prevents Pb(II) hepatotoxicity via attenuation of oxidative injury and inflammation, activation of Akt and inhibition of GSK-3β. However, further studies scrutinizing the exact role of Akt/GSK-3β signaling are recommended.


2002 ◽  
Vol 11 (1) ◽  
pp. 17-22 ◽  
Author(s):  
Pravit Akarasereenont ◽  
Kitirat Techatraisak ◽  
Athiwat Thaworn ◽  
Sirikul Chotewuttakorn

Cyclooxygenase (COX), existing as the COX-1 and COX-2 isoforms, converts arachidonic acid to prostaglandin H2, which is then further metabolized to various prostaglandins. Vascular endothelial growth factor (VEGF) has been shown to play important roles in inflammation and is upregulated by the prostaglandin E series through COX-2 in several cell types. Here, we have investigated the effects of VEGF on the COX isoform expressed in human umbilical vein endothelial cells (HUVEC). The signalling mechanism of the COX isoform expressed in endothelial cells activated with VEGF will be also investigated using the tyrosine kinase inhibitor, genistein, and protein kinase C inhibitor, staurosporine. The activity of COX2 was assessed by measuring the production of 6-keto-prostaglandin F1α in the presence of exogenous arachidonic acids (10 μM, 10 min) by enzyme immunoassay. The expression of COX isoform protein was detected by immunoblot using specific antibodies. Untreated HUVEC contained no COX-2 protein. In HUVEC treated with VEGF (0.01-50 ng/ml), COX-2 protein, but not COX-1, and COX activity were increased in a dose-dependent manner. Interestingly, the increased COX-2 protein and activity in response to VEGF (10 ng/ml) was inhibited by the tyrosine kinase inhibitor, genistein (0.05-5 μg/ml), but not by the protein kinase C inhibitor, staurosporine (0.1-10 ng/ml). Thus, the induction of COX-2 by VEGF in endothelial cells was mediated through protein tyrosine kinase, and the uses of specific COX-2 inhibitors in these conditions, in which VEGF was involved, might have a role.


Sign in / Sign up

Export Citation Format

Share Document