Cells derived from porcine aorta tunica media show mesenchymal stromal-like cell properties in in vitro culture

2014 ◽  
Vol 306 (4) ◽  
pp. C322-C333 ◽  
Author(s):  
Andrea Zaniboni ◽  
Chiara Bernardini ◽  
Marco Alessandri ◽  
Chiara Mangano ◽  
Augusta Zannoni ◽  
...  

Several studies have already described the presence of specialized niches of precursor cells in vasculature wall, and it has been shown that these populations share several features with mesenchymal stromal cells (MSCs). Considering the relevance of MSCs in the cardiovascular physiopathology and regenerative medicine, and the usefulness of the pig animal model in this field, we reported a new method for MSC-like cell isolation from pig aorta. Filling the vessel with a collagenase solution for 40 min, all endothelial cells were detached and discarded and then collagenase treatment was repeated for 4 h to digest approximately one-third of the tunica media. The ability of our method to select a population of MSC-like cells from tunica media could be ascribed in part to the elimination of contaminant cells from the intimal layer and in part to the overnight culture in the high antibiotic/antimycotic condition and to the starvation step. Aortic-derived cells show an elongated, spindle shape, fibroblast-like morphology, as reported for MSCs, stain positively for CD44, CD56, CD90, and CD105; stain negatively for CD34 and CD45; and express CD73 mRNA. Moreover, these cells show the classical mesenchymal trilineage differentiation potential. Under our in vitro culture conditions, aortic-derived cells share some phenotypical features with pericytes and are able to take part in the formation of network-like structures if cocultured with human umbilical vein endothelial cells. In conclusion, our work reports a simple and highly suitable method for obtaining large numbers of precursor MSC-like cells derived from the porcine aortic wall.


1982 ◽  
Vol 94 (3) ◽  
pp. 511-520 ◽  
Author(s):  
T Maciag ◽  
J Kadish ◽  
L Wilkins ◽  
M B Stemerman ◽  
R Weinstein

Culture conditions that favor rapid multiplication of human umbilical vein endothelial cells (HUV-EC) also support long-term serial propagation of the cells. This is routinely achieved when HUV-EC are grown in Medium 199 (M-199) supplemented with fetal bovine serum (FBS) and endothelial cell growth factor (ECGF), on a human fibronectin (HFN) matrix. The HUV-EC can shift from a proliferative to an organized state when the in vitro conditions are changed from those favoring low density proliferation to those supporting high density survival. When ECGF and HFN are omitted, cultures fail to achieve confluence beyond the first or second passage: the preconfluent cultures organize into tubular structures after 4-6 wk. Some tubes become grossly visible and float in the culture medium, remaining tethered to the plastic dish at either end of the tube. On an ultrastructural level, the tubes consist of cells, held together by junctional complexes, arranged so as to form a lumen. The smallest lumens are formed by one cell folding over to form a junction with itself. The cells contain Weibel-Palade bodies and factor VIII-related antigen. The lumens contain granular, fibrillar and amorphous debris. Predigesting the HFN matrix with trypsin (10 min, 37 degrees C) or plasmin significantly accelerates tube formation. Thrombin and plasminogen activator had no apparent effect. Disruption of the largest tubes with trypsin/EDTA permits the cells to revert to a proliferative state if plated on HFN, in M-199, FBS, and ECGF. These observations indicate that culture conditions that do not favor proliferation permit attainment of a state of nonterminal differentiation (organization) by the endothelial cell. Furthermore, proteolytic modification of the HFN matrix may play an important role in endothelial organization.



Author(s):  
Susan Gallogly ◽  
Takeshi Fujisawa ◽  
John D. Hung ◽  
Mairi Brittan ◽  
Elizabeth M. Skinner ◽  
...  

Abstract Purpose Endothelial dysfunction is central to the pathogenesis of acute coronary syndrome. The study of diseased endothelium is very challenging due to inherent difficulties in isolating endothelial cells from the coronary vascular bed. We sought to isolate and characterise coronary endothelial cells from patients undergoing thrombectomy for myocardial infarction to develop a patient-specific in vitro model of endothelial dysfunction. Methods In a prospective cohort study, 49 patients underwent percutaneous coronary intervention with thrombus aspiration. Specimens were cultured, and coronary endothelial outgrowth (CEO) cells were isolated. CEO cells, endothelial cells isolated from peripheral blood, explanted coronary arteries, and umbilical veins were phenotyped and assessed functionally in vitro and in vivo. Results CEO cells were obtained from 27/37 (73%) atherothrombotic specimens and gave rise to cells with cobblestone morphology expressing CD146 (94 ± 6%), CD31 (87 ± 14%), and von Willebrand factor (100 ± 1%). Proliferation of CEO cells was impaired compared to both coronary artery and umbilical vein endothelial cells (population doubling time, 2.5 ± 1.0 versus 1.6 ± 0.3 and 1.2 ± 0.3 days, respectively). Cell migration was also reduced compared to umbilical vein endothelial cells (29 ± 20% versus 85±19%). Importantly, unlike control endothelial cells, dysfunctional CEO cells did not incorporate into new vessels or promote angiogenesis in vivo. Conclusions CEO cells can be reliably isolated and cultured from thrombectomy specimens in patients with acute coronary syndrome. Compared to controls, patient-derived coronary endothelial cells had impaired capacity to proliferate, migrate, and contribute to angiogenesis. CEO cells could be used to identify novel therapeutic targets to enhance endothelial function and prevent acute coronary syndromes.



2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zaipul I. Md Dom ◽  
Caterina Pipino ◽  
Bozena Krolewski ◽  
Kristina O’Neil ◽  
Eiichiro Satake ◽  
...  

AbstractWe recently identified a kidney risk inflammatory signature (KRIS), comprising 6 TNF receptors (including TNFR1 and TNFR2) and 11 inflammatory proteins. Elevated levels of these proteins in circulation were strongly associated with risk of the development of end-stage kidney disease (ESKD) during 10-year follow-up. It has been hypothesized that elevated levels of these proteins in circulation might reflect (be markers of) systemic exposure to TNFα. In this in vitro study, we examined intracellular and extracellular levels of these proteins in human umbilical vein endothelial cells (HUVECs) exposed to TNFα in the presence of hyperglycemia. KRIS proteins as well as 1300 other proteins were measured using the SOMAscan proteomics platform. Four KRIS proteins (including TNFR1) were down-regulated and only 1 protein (IL18R1) was up-regulated in the extracellular fraction of TNFα-stimulated HUVECs. In the intracellular fraction, one KRIS protein was down-regulated (CCL14) and 1 protein was up-regulated (IL18R1). The levels of other KRIS proteins were not affected by exposure to TNFα. HUVECs exposed to a hyperglycemic and inflammatory environment also showed significant up-regulation of a distinct set of 53 proteins (mainly in extracellular fraction). In our previous study, circulating levels of these proteins were not associated with progression to ESKD in diabetes.



2005 ◽  
Vol 115 (3) ◽  
pp. 219-228 ◽  
Author(s):  
Yoshinobu Seki ◽  
Ken Toba ◽  
Ichiro Fuse ◽  
Naoaki Sato ◽  
Hiroe Niwano ◽  
...  


2008 ◽  
Vol 2008 ◽  
pp. 1-8 ◽  
Author(s):  
Shumei Man ◽  
Eroboghene E. Ubogu ◽  
Katherine A. Williams ◽  
Barbara Tucky ◽  
Melissa K. Callahan ◽  
...  

Endothelial cells that functionally express blood brain barrier (BBB) properties are useful surrogates for studying leukocyte-endothelial cell interactions at the BBB. In this study, we compared two different endothelial cellular models: transfected human brain microvascular endothelial cells (THBMECs) and human umbilical vein endothelial cells (HUVECs). With each grow under optimal conditions, confluent THBMEC cultures showed continuous occludin and ZO-1 immunoreactivity, while HUVEC cultures exhibited punctate ZO-1 expression at sites of cell-cell contact only. Confluent THBMEC cultures on 24-well collagen-coated transwell inserts had significantly higher transendothelial electrical resistance (TEER) and lower solute permeability than HUVECs. Confluent THBMECs were more restrictive for mononuclear cell migration than HUVECs. Only THBMECs utilized abluminal CCL5 to facilitate T-lymphocyte migration in vitro although both THBMECs and HUVECs employed CCL3 to facilitate T cell migration. These data establish baseline conditions for using THBMECs to develop in vitro BBB models for studying leukocyte-endothelial interactions during neuroinflammation.



2017 ◽  
Vol 26 (2) ◽  
pp. 645-654 ◽  
Author(s):  
Yuexin Shen ◽  
Gui Chen ◽  
Aiping Xiao ◽  
Yixi Xie ◽  
Liangliang Liu ◽  
...  


Immunobiology ◽  
2006 ◽  
Vol 211 (5) ◽  
pp. 351-357 ◽  
Author(s):  
Jong-Seo Yoon ◽  
Hyun-Hee Kim ◽  
Ji-Whan Han ◽  
Yoon Lee ◽  
Joon-Sung Lee


Sign in / Sign up

Export Citation Format

Share Document