Linear relation between time constant of oxygen uptake kinetics, total creatine, and mitochondrial content in vitro

2008 ◽  
Vol 294 (1) ◽  
pp. C79-C87 ◽  
Author(s):  
Brian Glancy ◽  
Thomas Barstow ◽  
Wayne T. Willis

Following the onset of moderate aerobic exercise, the rate of oxygen consumption (Jo) rises monoexponentially toward the new steady state with a time constant (τ) in the vicinity of 30 s. The mechanisms underlying this delay have been studied over several decades. Meyer's electrical analog model proposed the concept that the τ is given by τ = Rm· C, where Rm is mitochondrial resistance to energy transfer, and C is metabolic capacitance, determined primarily by the cellular total creatine pool (TCr = phosphocreatine + creatine). The purpose of this study was to evaluate in vitro the Jo kinetics of isolated rat skeletal muscle mitochondria at various levels of TCr and mitochondrial protein. Mitochondria were incubated in a medium containing 5.0 mM ATP, TCr pools of 0–1.5 mM, excess creatine kinase, and an ATP-splitting system of glucose + hexokinase (HK). Pyruvate and malate (1 mM each) were present as oxidative substrates. Jo was measured across time after HK was added to elicit one of two levels of Jo (40 and 60% of state 3). At TCr levels (in mM) of 0.1, 0.2, 0.3, 0.75, and 1.5, the corresponding τ values (s, means ± SE) were 22.2 ± 3.0, 36.3 ± 2.2, 65.7 ± 4.3, 168.1 ± 22.2, and 287.3 ± 25.9. Thus τ increased linearly with TCr ( R2 = 0.916). Furthermore, the experimentally observed τ varied linearly and inversely with the mitochondrial protein added. These in vitro results consistently conform to the predictions of Meyer's electrical analog model.

1988 ◽  
Vol 254 (4) ◽  
pp. C548-C553 ◽  
Author(s):  
R. A. Meyer

Phosphocreatine (PCr) content was measured by phosphorus nuclear magnetic resonance spectroscopy in the gastrocnemius muscles of pentobarbital-anesthetized rats during and after twitch stimulation at rates up to 0.75 Hz. The monoexponential time constant for PCr changes was similar at the onset of vs. during recovery after stimulation and was not significantly different for different stimulation rates (mean time constant 1.44 min). Steady-state PCr level during stimulation was linearly related to the product of stimulation rate times peak twitch force. These results are shown to be consistent with a simple first-order electrical analog model of oxidative metabolism that is applicable at submaximal oxidative rates. The model assumes equilibrium of the creatine kinase reaction, which is modeled as a chemical capacitor, with capacitance proportional to the total creatine level, and PCr level proportional to the cytosolic free energy of ATP hydrolysis.


1993 ◽  
Vol 264 (2) ◽  
pp. C383-C389 ◽  
Author(s):  
A. M. Cogswell ◽  
R. J. Stevens ◽  
D. A. Hood

Two mitochondrial fractions, termed intermyofibrillar (IMF) and subsarcolemmal (SS), were isolated from skeletal muscle, and their biochemical properties were related to differences in respiration and mitochondrial protein synthesis. State III respiration was 2.3- to 2.8-fold greater in IMF than in SS mitochondria. Site 1 inhibition of respiration with rotenone reduced this difference to 1.4-fold. When sites 1 and 2 were inhibited with antimycin, the 1.4-fold differences remained. The activities of cytochrome-c oxidase (CYTOX) and succinate dehydrogenase (SDH) could account for some of these differences, since CYTOX was 20% greater (P < 0.05) in IMF mitochondria, and SDH was 40% greater (P < 0.05) in SS mitochondria. Cytochromes a, b, c, and c1 contents were similar in the two fractions. Cardiolipin (CL) content was higher (P < 0.05) in SS mitochondria, indicating a less dense mitochondrial fraction with respect to CL. In vitro [3H]leucine incorporation was 1.8-fold higher (P < 0.05) in IMF than in SS mitochondria. Thus compositional differences between IMF and SS fractions exist, perhaps representing mitochondria at different stages of biogenesis. The biochemical and functional differences could not solely be due to differences in mitochondrial protein synthesis but could also be due to nuclear-directed protein synthesis specific to each mitochondrial fraction.


Author(s):  
Beverly E. Maleeff ◽  
Timothy K. Hart ◽  
Stephen J. Wood ◽  
Ronald Wetzel

Alzheimer's disease is characterized post-mortem in part by abnormal extracellular neuritic plaques found in brain tissue. There appears to be a correlation between the severity of Alzheimer's dementia in vivo and the number of plaques found in particular areas of the brain. These plaques are known to be the deposition sites of fibrils of the protein β-amyloid. It is thought that if the assembly of these plaques could be inhibited, the severity of the disease would be decreased. The peptide fragment Aβ, a precursor of the p-amyloid protein, has a 40 amino acid sequence, and has been shown to be toxic to neuronal cells in culture after an aging process of several days. This toxicity corresponds to the kinetics of in vitro amyloid fibril formation. In this study, we report the biochemical and ultrastructural effects of pH and the inhibitory agent hexadecyl-N-methylpiperidinium (HMP) bromide, one of a class of ionic micellar detergents known to be capable of solubilizing hydrophobic peptides, on the in vitro assembly of the peptide fragment Aβ.


1977 ◽  
Vol 16 (04) ◽  
pp. 157-162 ◽  
Author(s):  
C. Schümichen ◽  
B. Mackenbrock ◽  
G. Hoffmann

SummaryThe bone-seeking 99mTc-Sn-pyrophosphate compound (compound A) was diluted both in vitro and in vivo and proved to be unstable both in vitro and in vivo. However, stability was much better in vivo than in vitro and thus the in vitro stability of compound A after dilution in various mediums could be followed up by a consecutive evaluation of the in vivo distribution in the rat. After dilution in neutral normal saline compound A is metastable and after a short half-life it is transformed into the other 99mTc-Sn-pyrophosphate compound A is metastable and after a short half-life in bone but in the kidneys. After dilution in normal saline of low pH and in buffering solutions the stability of compound A is increased. In human plasma compound A is relatively stable but not in plasma water. When compound B is formed in a buffering solution, uptake in the kidneys and excretion in urine is lowered and blood concentration increased.It is assumed that the association of protons to compound A will increase its stability at low concentrations while that to compound B will lead to a strong protein bond in plasma. It is concluded that compound A will not be stable in vivo because of a lack of stability in the extravascular space, and that the protein bond in plasma will be a measure of its in vivo stability.


1981 ◽  
Vol 45 (03) ◽  
pp. 285-289 ◽  
Author(s):  
J P Allain ◽  
A Gaillandre ◽  
D Frommel

SummaryFactor VIII complex and its interaction with antibodies to factor VIII have been studied in 17 non-haemophilic patients with factor VIII inhibitor. Low VIII:C and high VIIIR.Ag levels were found in all patients. VIII:WF levels were 50% of those of VTIIRrAg, possibly related to an increase of poorly aggregated and electrophoretically fast moving VIIIR:Ag oligomers.Antibody function has been characterized by kinetics of VIII :C inactivation, saturability by normal plasma and the slope of the affinity curve. Two major patterns were observed:1) Antibodies from 6 patients behaved similarly to those from haemophiliacs by showing second order inhibition kinetics, easy saturability and steep affinity slope (> 1).2) Antibodies from other patients, usually with lower titres, inactivated VIII :C according to complex order kinetics, were not saturable, and had a less steep affinity slope (< 0.7). In native plasma, or after mixing with factor VIII concentrate, antibodies of the second group did not form immune complexes with the whole factor VIII molecular complex. However, dissociation procedures did release some antibodies from apparently low molecular weight complexes formed in vivo or in vitro. For appropriate management of non-haemophilic patients with factor VIII inhibitor, it is important to determine the functional properties of their antibodies to factor VIII.


1979 ◽  
Vol 42 (05) ◽  
pp. 1630-1633 ◽  
Author(s):  
A G Castle ◽  
N Crawford

SummaryBlood platelets contain microtubule proteins (tubulin and HMWs) which can be polymerised “in vitro” to form structures which resemble the microtubules seen in the intact platelet. Platelet tubulin is composed of two non-identical subunits a and p tubulin which have molecular weights around 55,000 but can be resolved in alkaline SDS-polyacrylamide gel electrophoresis. These subunits associate as dimers with sedimentation coefficients of about 5.7 S although it is not known whether the dimer protein is a homo- or hetero-dimer. The dimer tubulin binds the anti-mitotic drug colchicine and the kinetics of this binding are similar to those reported for neurotubulins. Platelet microtubules also contain two HMW proteins which appear to be essential and integral components of the fully assembled microtubule. These proteins have molecular weights greater than 200,000 daltons. Fluorescent labelled antibodies to platelet and brain tubulins stain long filamentous microtubular structures in bovine lens epithelial cells and this pattern of staining is prevented by exposing the cells to conditions known to cause depolymerisation of cell microtubules.


Sign in / Sign up

Export Citation Format

Share Document