scholarly journals Activation and stretch-induced passive force enhancement—are you pulling my chain? Focus on “Regulation of muscle force in the absence of actin-myosin-based cross-bridge interaction”

2010 ◽  
Vol 299 (1) ◽  
pp. C11-C13 ◽  
Author(s):  
Henk L. Granzier
2008 ◽  
Vol 294 (1) ◽  
pp. C74-C78 ◽  
Author(s):  
V. Joumaa ◽  
D. E. Rassier ◽  
T. R. Leonard ◽  
W. Herzog

The aim of the present study was to test whether titin is a calcium-dependent spring and whether it is the source of the passive force enhancement observed in muscle and single fiber preparations. We measured passive force enhancement in troponin C (TnC)-depleted myofibrils in which active force production was completely eliminated. The TnC-depleted construct allowed for the investigation of the effect of calcium concentration on passive force, without the confounding effects of actin-myosin cross-bridge formation and active force production. Passive forces in TnC-depleted myofibrils ( n = 6) were 35.0 ± 2.9 nN/ μm2 when stretched to an average sarcomere length of 3.4 μm in a solution with low calcium concentration (pCa 8.0). Passive forces in the same myofibrils increased by 25% to 30% when stretches were performed in a solution with high calcium concentration (pCa 3.5). Since it is well accepted that titin is the primary source for passive force in rabbit psoas myofibrils and since the increase in passive force in TnC-depleted myofibrils was abolished after trypsin treatment, our results suggest that increasing calcium concentration is associated with increased titin stiffness. However, this calcium-induced titin stiffness accounted for only ∼25% of the passive force enhancement observed in intact myofibrils. Therefore, ∼75% of the normally occurring passive force enhancement remains unexplained. The findings of the present study suggest that passive force enhancement is partly caused by a calcium-induced increase in titin stiffness but also requires cross-bridge formation and/or active force production for full manifestation.


2004 ◽  
Vol 97 (4) ◽  
pp. 1395-1400 ◽  
Author(s):  
Dilson E. Rassier ◽  
Walter Herzog

There is evidence that the stretch-induced residual force enhancement observed in skeletal muscles is associated with 1) cross-bridge dynamics and 2) an increase in passive force. The purpose of this study was to characterize the total and passive force enhancement and to evaluate whether these phenomena may be associated with a slow detachment of cross bridges. Single fibers from frog lumbrical muscles were placed at a length 20% longer than the plateau of the force-length relationship, and active and passive stretches (amplitudes of 5 and 10% of fiber length and at a speed of 40% fiber length/s) were performed. Experiments were conducted in Ringer solution and with the addition of 2, 5, and 10 mM of 2,3-butanedione monoxime (BDM), a cross-bridge inhibitor. The steady-state active and passive isometric forces after stretch of an activated fiber were higher than the corresponding forces measured after isometric contractions or passive stretches. BDM decreased the absolute isometric force and increased the total force enhancement in all conditions investigated. These results suggest that total force enhancement is directly associated with cross-bridge kinetics. Addition of 2 mM BDM did not change the passive force enhancement after 5 and 10% stretches. Addition of 5 and 10 mM did not change (5% stretches) or increased (10% stretches) the passive force enhancement. Increasing stretch amplitudes and increasing concentrations of BDM caused relaxation after stretch to be slower, and because passive force enhancement is increased at the greatest stretch amplitudes and the highest BDM concentrations, it appears that passive force enhancement may be related to slow-detaching cross bridges.


2004 ◽  
Vol 287 (3) ◽  
pp. C594-C602 ◽  
Author(s):  
Christopher M. Rembold ◽  
Robert L. Wardle ◽  
Christopher J. Wingard ◽  
Timothy W. Batts ◽  
Elaine F. Etter ◽  
...  

Serine 19 phosphorylation of the myosin regulatory light chain (MRLC) appears to be the primary determinant of smooth muscle force development. The relationship between MRLC phosphorylation and force is nonlinear, showing that phosphorylation is not a simple switch regulating the number of cycling cross bridges. We reexamined the MRLC phosphorylation-force relationship in slow, tonic swine carotid media; fast, phasic rabbit urinary bladder detrusor; and very fast, tonic rat anococcygeus. We found a sigmoidal dependence of force on MRLC phosphorylation in all three tissues with a threshold for force development of ∼0.15 mol Pi/mol MRLC. This behavior suggests that force is regulated in a highly cooperative manner. We then determined whether a model that employs both the latch-bridge hypothesis and cooperative activation could reproduce the relationship between Ser19-MRLC phosphorylation and force without the need for a second regulatory system. We based this model on skeletal muscle in which attached cross bridges cooperatively activate thin filaments to facilitate cross-bridge attachment. We found that such a model describes both the steady-state and time-course relationship between Ser19-MRLC phosphorylation and force. The model required both cooperative activation and latch-bridge formation to predict force. The best fit of the model occurred when binding of a cross bridge cooperatively activated seven myosin binding sites on the thin filament. This result suggests cooperative mechanisms analogous to skeletal muscle that will require testing.


1997 ◽  
Vol 83 (4) ◽  
pp. 1326-1332 ◽  
Author(s):  
William J. Perkins ◽  
Young-Soo Han ◽  
Gary C. Sieck

Perkins, William J., Young-Soo Han, and Gary C. Sieck.Skeletal muscle force and actomyosin ATPase activity reduced by nitric oxide donor. J. Appl. Physiol.83(4): 1326–1332, 1997.—Nitric oxide (NO) may exert direct effects on actin-myosin cross-bridge cycling by modulating critical thiols on the myosin head. In the present study, the effects of the NO donor sodium nitroprusside (SNP; 100 μM to 10 mM) on mechanical properties and actomyosin adenosinetriphosphatase (ATPase) activity of single permeabilized muscle fibers from the rabbit psoas muscle were determined. The effects of N-ethylmaleimide (NEM; 5–250 μM), a thiol-specific alkylating reagent, on mechanical properties of single fibers were also evaluated. Both NEM (≥25 μM) and SNP (≥1 mM) significantly inhibited isometric force and actomyosin ATPase activity. The unloaded shortening velocity of SNP-treated single fibers was decreased, but to a lesser extent, suggesting that SNP effects on isometric force and actomyosin ATPase were largely due to decreased cross-bridge recruitment. The calcium sensitivity of SNP-treated single fibers was also decreased. The effects of SNP, but not NEM, on force and actomyosin ATPase activity were reversed by treatment with 10 mMdl-dithiothreitol, a thiol-reducing agent. We conclude that the NO donor SNP inhibits contractile function caused by reversible oxidation of contractile protein thiols.


Medicina ◽  
2020 ◽  
Vol 56 (5) ◽  
pp. 249
Author(s):  
Hans Degens ◽  
David A. Jones

Background and Objectives: Muscle fatigue is characterised by (1) loss of force, (2) decreased maximal shortening velocity and (3) a greater resistance to stretch that could be due to reduced intracellular Ca2+ and increased Pi, which alter cross bridge kinetics. Materials and Methods: To investigate this, we used (1) 2,3-butanedione monoxime (BDM), believed to increase the proportion of attached but non-force-generating cross bridges; (2) Pi that increases the proportion of attached cross bridges, but with Pi still attached; and (3) reduced activating Ca2+. We used permeabilised rat soleus fibres, activated with pCa 4.5 at 15 °C. Results: The addition of 1 mM BDM or 15 mM Pi, or the lowering of the Ca2+ to pCa 5.5, all reduced the isometric force by around 50%. Stiffness decreased in proportion to isometric force when the fibres were activated at pCa 5.5, but was well maintained in the presence of Pi and BDM. Force enhancement after a stretch increased with the length of stretch and Pi, suggesting a role for titin. Maximum shortening velocity was reduced by about 50% in the presence of BDM and pCa 5.5, but was slightly increased by Pi. Neither decreasing Ca2+ nor increasing Pi alone mimicked the effects of fatigue on muscle contractile characteristics entirely. Only BDM elicited a decrease of force and slowing with maintained stiffness, similar to the situation in fatigued muscle. Conclusions: This suggests that in fatigue, there is an accumulation of attached but low-force cross bridges that cannot be the result of the combined action of reduced Ca2+ or increased Pi alone, but is probably due to a combination of factors that change during fatigue.


2021 ◽  
Vol 22 (16) ◽  
pp. 8526
Author(s):  
Venus Joumaa ◽  
Ian C. Smith ◽  
Atsuki Fukutani ◽  
Timothy R. Leonard ◽  
Weikang Ma ◽  
...  

Our purpose was to use small-angle X-ray diffraction to investigate the structural changes within sarcomeres at steady-state isometric contraction following active lengthening and shortening, compared to purely isometric contractions performed at the same final lengths. We examined force, stiffness, and the 1,0 and 1,1 equatorial and M3 and M6 meridional reflections in skinned rabbit psoas bundles, at steady-state isometric contraction following active lengthening to a sarcomere length of 3.0 µm (15.4% initial bundle length at 7.7% bundle length/s), and active shortening to a sarcomere length of 2.6 µm (15.4% bundle length at 7.7% bundle length/s), and during purely isometric reference contractions at the corresponding sarcomere lengths. Compared to the reference contraction, the isometric contraction after active lengthening was associated with an increase in force (i.e., residual force enhancement) and M3 spacing, no change in stiffness and the intensity ratio I1,1/I1,0, and decreased lattice spacing and M3 intensity. Compared to the reference contraction, the isometric contraction after active shortening resulted in decreased force, stiffness, I1,1/I1,0, M3 and M6 spacings, and M3 intensity. This suggests that residual force enhancement is achieved without an increase in the proportion of attached cross-bridges, and that force depression is accompanied by a decrease in the proportion of attached cross-bridges. Furthermore, the steady-state isometric contraction following active lengthening and shortening is accompanied by an increase in cross-bridge dispersion and/or a change in the cross-bridge conformation compared to the reference contractions.


2008 ◽  
Vol 41 (7) ◽  
pp. 1611-1615 ◽  
Author(s):  
A. Mehta ◽  
W. Herzog

2010 ◽  
Vol 139-141 ◽  
pp. 903-907
Author(s):  
Xiu Xia Liang

In this paper, we propose a fast approach to simulate the dynamic behavior of skeletal muscles based on bio-mechanical and anatomical properties. In contrast to physically accurate deformation, this simulation achieves faster and better simulation of skeletal muscles, with the cost of unnoticeable visual accuracy. Internal constrains are generated to conserve linear and angular momentum which is essential for cloth self-collision. Deformation constraints are defined by using the muscle force-length relationship serve as Control Axial Curve, which constrainedly generates the active and passive force of the muscles to drive skeletal motion during the deformation process. This approach generates realistic visual effect, and manages the deformation of muscles on the basis of the bio-mechanical properties with fast speed. We have demonstrated the simulation by creating a musculoskeletal model of the upper limb.


1995 ◽  
Vol 117 (3) ◽  
pp. 339-342 ◽  
Author(s):  
Jacek Cholewicki ◽  
Stuart M. McGill

Several types of analyses in biomechanics require estimates of both muscle force and stiffness. Simulations were performed using the two-state cross-bridge Bond Distribution-Moment muscle model of Zahalak (1981), together with other parameters for passive elasticity and tendon compliance, to estimate instantaneous stiffness and to compare these estimates with the wide range of values reported in the literature. While the relatively simple cross-bridge theory appears to approximate the stiffness of skinned muscle fibers, the stiffness of a complete muscle-tendon unit become complex and non-linear due to relative changes in muscle-tendon length and interaction with activation and length dependent passive elastic components. It would appear that the variability in muscle stiffness values reported in the literature can be explained with the D-M approach.


Sign in / Sign up

Export Citation Format

Share Document