Store-operated Ca2+ entry modulates sarcoplasmic reticulum Ca2+ loading in neonatal rabbit cardiac ventricular myocytes

2006 ◽  
Vol 290 (6) ◽  
pp. C1572-C1582 ◽  
Author(s):  
Jingbo Huang ◽  
Casey van Breemen ◽  
Kuo-Hsing Kuo ◽  
Leif Hove-Madsen ◽  
Glen F. Tibbits

Store-operated Ca2+ entry (SOCE), which is Ca2+ entry triggered by the depletion of intracellular Ca2+ stores, has been observed in many cell types, but only recently has it been suggested to occur in cardiomyocytes. In the present study, we have demonstrated SOCE-dependent sarcoplasmic reticulum (SR) Ca2+ loading (loadSR) that was not altered by inhibition of L-type Ca2+ channels, reverse mode Na+/Ca2+ exchange (NCX), or nonselective cation channels. In contrast, lowering the extracellular [Ca2+] to 0 mM or adding either 0.5 mM Zn2+ or the putative store-operated channel (SOC) inhibitor SKF-96365 (100 μM) inhibited loadSR at rest. Interestingly, inhibition of forward mode NCX with 30 μM KB-R7943 stimulated SOCE significantly and resulted in enhanced loadSR. In addition, manipulation of the extracellular and intracellular Na+ concentrations further demonstrated the modulatory role of NCX in SOCE-mediated SR Ca2+ loading. Although there is little knowledge of SOCE in cardiomyocytes, the present results suggest that this mechanism, together with NCX, may play an important role in SR Ca2+ homeostasis. The data reported herein also imply the presence of microdomains unique to the neonatal cardiomyocyte. These findings may be of particular importance during open heart surgery in neonates, in which uncontrolled SOCE could lead to SR Ca2+ overload and arrhythmogenesis.

2014 ◽  
Vol 307 (12) ◽  
pp. R1493-R1501 ◽  
Author(s):  
Caroline Cros ◽  
Laurent Sallé ◽  
Daniel E. Warren ◽  
Holly A. Shiels ◽  
Fabien Brette

Cardiomyocyte contraction depends on rapid changes in intracellular Ca2+. In mammals, Ca2+ influx as L-type Ca2+ current ( ICa) triggers the release of Ca2+ from sarcoplasmic reticulum (SR) and Ca2+-induced Ca2+ release (CICR) is critical for excitation-contraction coupling. In fish, the relative contribution of external and internal Ca2+ is unclear. Here, we characterized the role of ICa to trigger SR Ca2+ release in rainbow trout ventricular myocytes using ICa regulation by Ca2+ as an index of CICR. ICa was recorded with a slow (EGTA) or fast (BAPTA) Ca2+ chelator in control and isoproterenol conditions. In the absence of β-adrenergic stimulation, the rate of ICa inactivation was not significantly different in EGTA and BAPTA (27.1 ± 1.8 vs. 30.3 ± 2.4 ms), whereas with isoproterenol (1 μM), inactivation was significantly faster with EGTA (11.6 ± 1.7 vs. 27.3 ± 1.6 ms). When barium was the charge carrier, inactivation was significantly slower in both conditions (61.9 ± 6.1 vs. 68.0 ± 8.7 ms, control, isoproterenol). Quantification revealed that without isoproterenol, only 39% of ICa inactivation was due to Ca2+, while with isoproterenol, inactivation was Ca2+-dependent (∼65%) and highly reliant on SR Ca2+ (∼46%). Thus, SR Ca2+ is not released in basal conditions, and ICa is the main trigger of contraction, whereas during a stress response, SR Ca2+ is an important source of cytosolic Ca2+. This was not attributed to differences in SR Ca2+ load because caffeine-induced transients were not different in both conditions. Therefore, Ca2+ stored in SR of trout cardiomyocytes may act as a safety mechanism, allowing greater contraction when higher contractility is required, such as stress or exercise.


2007 ◽  
Vol 106 (2) ◽  
pp. 302-311 ◽  
Author(s):  
Peter J. Wickley ◽  
Toshiya Shiga ◽  
Paul A. Murray ◽  
Derek S. Damron

Background The authors' objective was to identify the role of the Na+-Ca2+ exchanger (NCX) in mediating the contractile dysfunction observed in diabetic cardiomyocytes before and after exposure to propofol. Methods Freshly isolated ventricular myocytes were obtained from normal and diabetic rat hearts. Intracellular concentration of Ca2+ and cell shortening were simultaneously measured in electrically stimulated, ventricular myocytes using fura-2 and video-edge detection, respectively. Postrest potentiation (PRP) and sarcoplasmic reticulum Ca2+ load were used to assess propofol-induced changes in the activity of the NCX. Results Propofol (10 microM) increased PRP in diabetic cardiomyocytes but had no effect on PRP in normal cardiomyocytes. Removal of sodium enhanced and KB-R7943 (reverse mode NCX inhibitor) blocked PRP in both normal and diabetic cardiomyocytes. In the absence of sodium, propofol enhanced PRP in diabetic cardiomyocytes but had no additional effect in normal cardiomyocytes. KB-R7943 completely blocked propofol-induced potentiation of peak intracellular concentration of Ca2+ and shortening in both cell types. Propofol increased sarcoplasmic reticulum Ca2+ load and prolonged removal of cytosolic Ca2+ in diabetic cardiomyocytes, but not in normal cardiomyocytes. Removal of sodium enhanced propofol-induced increases in sarcoplasmic reticulum Ca2+ load and further prolonged removal of cytosolic Ca2+, whereas KB-R7943 completely blocked propofol-induced increase in sarcoplasmic reticulum Ca2+ load. Protein kinase C inhibition with bisindolylmaleimide I prevented the propofol-induced increase in PRP and prolongation in Ca2+ removal. Conclusions These data suggest that propofol enhances PRP via activation of reverse mode NCX, but attenuates Ca2+ removal from the cytosol via inhibition of forward mode NCX in diabetic cardiomyocytes. The actions of propofol are mediated via a protein kinase C-dependent pathway.


1992 ◽  
Vol 263 (4) ◽  
pp. H1161-H1169 ◽  
Author(s):  
H. B. Nuss ◽  
S. R. Houser

The hypothesis that Ca entry by the sarcolemmal Na-Ca exchange mechanism induces sarcoplasmic reticulum (SR) Ca release, loads the SR with Ca, and/or directly induces contractions by elevating cytosolic free Ca was tested in voltage-clamped feline ventricular myocytes. Intracellular Na concentration was increased by cellular dialysis to enhance Ca influx via "reverse-mode" Na-Ca exchange at positive membrane potentials, at which the "L-type" Ca current (ICa) should be small. Contractions were induced in the presence of Ca channel antagonists by depolarization to these potentials, suggesting that Ca influx via reverse-mode Na-Ca exchange was involved. These contractions had both phasic (SR related) and tonic components of shortening. They were smaller and began with more delay after depolarization than contractions which involved ICa. The magnitude of shortening was graded by the amount and duration of depolarization, suggesting that Ca influx via reverse-mode Na-Ca exchange has the capacity to induce and grade SR Ca release. Small slow contractions could be evoked in the presence of ryanodine (to impair SR function) and verapamil (to block ICa), supporting the idea that Ca influx via Na-Ca exchange is sufficient to directly activate the contractile proteins. Contractions induced by voltage steps to +10 mV, which were usually small when ICa was blocked, were potentiated if preceded by a voltage step to strongly positive potentials. This potentiation was inhibited by ryanodine, suggesting that Ca entry that occurs by Na-Ca exchange may be important for normal SR Ca loading.(ABSTRACT TRUNCATED AT 250 WORDS)


2002 ◽  
Vol 282 (5) ◽  
pp. C1000-C1008 ◽  
Author(s):  
Kara L. Kopper ◽  
Joseph S. Adorante

In fura 2-loaded N1E-115 cells, regulation of intracellular Ca2+ concentration ([Ca2+]i) following a Ca2+ load induced by 1 μM thapsigargin and 10 μM carbonylcyanide p-trifluoromethyoxyphenylhydrazone (FCCP) was Na+ dependent and inhibited by 5 mM Ni2+. In cells with normal intracellular Na+ concentration ([Na+]i), removal of bath Na+, which should result in reversal of Na+/Ca2+exchange, did not increase [Ca2+]i unless cell Ca2+ buffer capacity was reduced. When N1E-115 cells were Na+ loaded using 100 μM veratridine and 4 μg/ml scorpion venom, the rate of the reverse mode of the Na+/Ca2+ exchanger was apparently enhanced, since an ∼4- to 6-fold increase in [Ca2+]ioccurred despite normal cell Ca2+ buffering. In SBFI-loaded cells, we were able to demonstrate forward operation of the Na+/Ca2+ exchanger (net efflux of Ca2+) by observing increases (∼ 6 mM) in [Na+]i. These Ni2+ (5 mM)-inhibited increases in [Na+]i could only be observed when a continuous ionomycin-induced influx of Ca2+ occurred. The voltage-sensitive dye bis-(1,3-diethylthiobarbituric acid) trimethine oxonol was used to measure changes in membrane potential. Ionomycin (1 μM) depolarized N1E-115 cells (∼25 mV). This depolarization was Na+dependent and blocked by 5 mM Ni2+ and 250–500 μM benzamil. These data provide evidence for the presence of an electrogenic Na+/Ca2+ exchanger that is capable of regulating [Ca2+]i after release of Ca2+ from cell stores.


2019 ◽  
Vol 9 (1) ◽  
pp. 36
Author(s):  
Laurence Jesel ◽  
Malak Abbas ◽  
Sin-Hee Park ◽  
Kensuke Matsushita ◽  
Michel Kindo ◽  
...  

Background: Whilst the link between aging and thrombogenicity in atrial fibrillation (AF) is well established, the cellular underlying mechanisms are unknown. In AF, the role of senescence in tissue remodeling and prothrombotic state remains unclear. Aims: We investigated the link between AF and senescence by comparing the expression of senescence markers (p53 and p16), with prothrombotic and inflammatory proteins in right atrial appendages from patients in AF and sinus rhythm (SR). Methods: The right atrial appendages of 147 patients undergoing open-heart surgery were harvested. Twenty-one non-valvular AF patients, including paroxysmal (PAF) or permanent AF (PmAF), were matched with 21 SR patients according to CHA2DS2-VASc score and treatment. Protein expression was assessed by tissue lysates Western blot analysis. Results: The expression of p53, p16, and tissue factor (TF) was significantly increased in AF compared to SR (0.91 ± 0.31 vs. 0.58 ± 0.31, p = 0.001; 0.76 ± 0.32 vs. 0.35 ± 0.18, p = 0.0001; 0.88 ± 0.32 vs. 0.68 ± 0.29, p = 0.045, respectively). Expression of endothelial NO synthase (eNOS) was lower in AF (0.25 ± 0.15 vs. 0.35 ± 0.12, p = 0.023). There was a stepwise increase of p53, p16, TF, matrix metalloproteinase-9, and an eNOS progressive decrease between SR, PAF, and PmAF. AF was the only predictive factor of p53 and p16 elevation in multivariate analysis. Conclusions: The study brought new evidence indicating that AF progression is strongly related to human atrial senescence burden and points at a link between senescence, thrombogenicity, endothelial dysfunction and atrial remodeling.


1993 ◽  
Vol 265 (4) ◽  
pp. H1334-H1341 ◽  
Author(s):  
G. B. Luciani ◽  
A. D'Agnolo ◽  
A. Mazzucco ◽  
V. Gallucci ◽  
G. Salviati

The effects of global ischemia on the contractile system and on sarcoplasmic reticulum (SR) function were studied by measuring the isometric tension and the SR Ca2+ release activity of chemically skinned cardiac fiber preparations from seven patients undergoing open-heart surgery. Ten minutes of ischemia caused 1) a decrease in the myofilament sensitivity to Ca2+ (expected Ca2+ concentration giving half-maximal tension; from 0.69 +/- 0.04 to 1.38 +/- 0.06 microM, n = 7) and in the cooperativity index (Hill coefficient; from 2.61 +/- 0.45 to 0.92 +/- 0.15, n = 7), 2) a decrease in myosin light chain phosphorylation, and 3) a 300% increase in the threshold caffeine concentration for SR Ca2+ efflux channel activation, with a 30% reduction in the rate of Ca2+ release by caffeine at threshold concentrations and a 23% reduction in the rate of release by 20 mM caffeine. After preincubation with 5 microM trifluoperazine, a calmodulin antagonist, the caffeine threshold of ischemic and control cardiac muscle became comparable. Most changes were reversed by reperfusion, while the caffeine threshold was still two times greater than control. These results indicate that ischemia caused alterations of the cardiac muscle contractile apparatus and the SR that were reversed only after reperfusion.


Cardiology ◽  
1995 ◽  
Vol 86 (6) ◽  
pp. 464-472 ◽  
Author(s):  
Hugo E. Saner ◽  
Jeanne D. Olson ◽  
Irwin F. Goldenberg ◽  
Richard W. Asinger

1998 ◽  
Vol 85 (6) ◽  
pp. 2159-2168 ◽  
Author(s):  
Bradley M. Palmer ◽  
Anne M. Thayer ◽  
Steven M. Snyder ◽  
Russell L. Moore

The effects of run endurance training and fura 2 loading on the contractile function and Ca2+ regulation of rat left ventricular myocytes were examined. In myocytes not loaded with fura 2, the maximal extent of myocyte shortening was reduced with training under our pacing conditions [0.5 Hz at 2.0 and 0.75 mM external Ca2+ concentration ([Ca2+]o)], although training had no effect on the temporal characteristics. The “light” loading of myocytes with fura 2 markedly suppressed (∼50%) maximal shortening in the sedentary and trained groups, although the temporal characteristics of myocyte shortening were significantly prolonged in the trained group. No discernible differences in the dynamic characteristics of the intracellular Ca2+ concentration ([Ca2+]) transient were detected at 2.0 mM [Ca2+]o, although peak [Ca2+] and rate of [Ca2+] rise during caffeine contracture were greater in the trained state at 0.75 mM [Ca2+]o. We conclude that training induced a diminished myocyte contractile function under the conditions studied here and a more effective coupling of inward Ca2+ current to sarcoplasmic reticulum Ca2+ release at low [Ca2+]o, and that fura 2 and its loading vehicle DMSO significantly alter the intrinsic characteristics of myocyte contractile function and Ca2+ regulation.


Sign in / Sign up

Export Citation Format

Share Document