scholarly journals USP10 promotes proliferation and migration and inhibits apoptosis of endometrial stromal cells in endometriosis through activating the Raf-1/MEK/ERK pathway

2018 ◽  
Vol 315 (6) ◽  
pp. C863-C872 ◽  
Author(s):  
Qiong Chen ◽  
Yuanyuan Hang ◽  
Tingting Zhang ◽  
Li Tan ◽  
Shuangdi Li ◽  
...  

Endometriosis has been initially described as endometrial-like tissue outside of the uterine cavity. The mitogen-activated protein kinase/ERK kinase (MEK)/extracellular signal-regulated kinase (ERK) signaling pathway playing an important role in the regulation of cell proliferation, apoptosis, and migration has been found to be activated in endometriosis. However, regulation of the MEK/ERK signaling pathway in endometriosis has not been fully understood. In this study, primary-cultured endometrial stromal cells were collected from patients with endometriosis and healthy controls, and the proliferation, apoptosis, and migration of ectopic endometrial stromal cells transfected with ubiquitin-specific protease 10 (USP10)-small-interfering RNA (siRNA) or pLVX-Puro-USP10 with or without MEK inhibitor PD-98059 or exogenous signaling stimulation such as epidermal growth factor (EGF) were measured by CCK-8, flow cytometry, and Transwell, respectively. The gene and protein expressions were measured by real-time PCR or Western blot. USP10 overexpression promoted ectopic endometrial stromal cell migration and proliferation, suppressed cell apoptosis, and activated MEK/ERK signaling that is a critical downstream target of the serine/threonine protein kinase Raf-1, which was significantly blocked by PD-98059. USP10 silencing demonstrated the inverse effects, and these effects induced by USP10 silencing were significantly blocked by EGF. USP10 overexpression promoted Raf-1 protein expression, but not mRNA expression, through deubiquitination. In conclusion, these results suggest that USP10 promotes proliferation and migration and inhibits apoptosis of endometrial stromal cells in endometriosis through activating the Raf-1/MEK/ERK pathway.

Neuroscience ◽  
2020 ◽  
Vol 433 ◽  
pp. 94-107 ◽  
Author(s):  
Jiannan Li ◽  
Zhan Zhang ◽  
Jiangbo Wang ◽  
Shuang Du ◽  
Dengbing Yao ◽  
...  

2021 ◽  
Author(s):  
Huashun Li ◽  
Dongyang Yu ◽  
Lianbing Li ◽  
Juanjuan Xiao ◽  
Yijian Zhu ◽  
...  

Abstract Background: Ovarian cancer is the most fatal gynecologic cancer, and epithelial ovarian cancer (EOC) is the most common type. The branched-chain α-keto acid dehydrogenase kinase (BCKDK) plays an important role in many serious human diseases, including cancers. Its function in promoting cell proliferation and migration has been reported in various cancers. However, the biological role of BCKDK and its molecular mechanisms underlying EOC initiation and progression are unclear.Methods: First, the expression level of BCKDK in EOC cell lines or tissues was determined using tissue microarray (TMA)-based immunohistochemistry or western blotting. Then, growth curve analysis, anchorage-independent cell transformation assays, wound healing assays, cell migration assays, and tumor xenografts were used to test whether BCKDK could promote cell transformation or metastasis. Finally, the signaling pathways involved in this process were investigated by western blotting or immunoprecipitation.Results: We found that the expression of BCKDK was upregulated in EOC tissues and that high expression of BCKDK was correlated with an advanced pathological grade in patients. The ectopic overexpression of BCKDK promoted the proliferation and migration of EOC cells, and the knockdown of BCKDK with shRNAs inhibited the proliferation and migration of EOC ex vivo and in vivo. Moreover, BCKDK promoted EOC proliferation and migration by activating MEK.Conclusions: Our results demonstrate that BCKDK promotes EOC proliferation and migration by activating the MEK/ERK signaling pathway. Targeting the BCKDK-MEK axis may provide a new therapeutic strategy for treating patients with EOC.


Sign in / Sign up

Export Citation Format

Share Document