scholarly journals Mouse organoid culture is a suitable model to study esophageal ion transport mechanisms

Author(s):  
Marietta Margaréta Korsós ◽  
Tamás Bellák ◽  
Eszter Becskeházi ◽  
Eleonóra Gál ◽  
Zoltán Veréb ◽  
...  

Altered esophageal ion transport mechanisms play a key role in inflammatory and cancerous diseases of the esophagus, but epithelial ion processes have been less studied in the esophagus because of the lack of a suitable experimental model. In this study, we generated 3D esophageal organoids (EOs) from two different mouse strains and characterized the ion transport processes of the EOs. EOs form a cell-filled structure with a diameter of 250-300 µm and generated from epithelial stem cells as shown by FACS analysis. Using conventional PCR and immunostaining, the presence of Slc26a6 Cl−/HCO3− anion exchanger (AE), Na+/H+ exchanger (NHE), Na+/HCO3- cotransporter (NBC), cystic fibrosis transmembrane conductance regulator (CFTR) and anoctamin 1 Cl− channels were detected in EOs. Microfluorimetric techniques revealed high NHE, AE, and NBC activities, whereas that of CFTR was relatively low. In addition, inhibition of CFTR led to functional interactions between the major acid-base transporters and CFTR. We conclude that EOs provide a relevant and suitable model system for studying the ion transport mechanisms of esophageal epithelial cells, and they can be also used as preclinical tools to assess the effectiveness of novel therapeutic compounds in esophageal diseases associated with altered ion transport processes.

2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Isabel Weiß ◽  
Johannes Bohrmann

Abstract Background During Drosophila oogenesis, the follicular epithelium differentiates into several morphologically distinct follicle-cell populations. Characteristic bioelectrical properties make this tissue a suitable model system for studying connections between electrochemical signals and the organisation of the cytoskeleton. Recently, we have described stage-specific transcellular antero-posterior and dorso-ventral gradients of intracellular pH (pHi) and membrane potential (Vmem) depending on the asymmetrical distribution and/or activity of various ion-transport mechanisms. In the present study, we analysed the patterns of basal microfilaments (bMF) and microtubules (MT) in relation to electrochemical signals. Results The bMF- and MT-patterns in developmental stages 8 to 12 were visualised using labelled phalloidin and an antibody against acetylated α-tubulin as well as follicle-cell specific expression of GFP-actin and GFP-α-tubulin. Obviously, stage-specific changes of the pHi- and Vmem-gradients correlate with modifications of the bMF- and MT-organisation. In order to test whether cytoskeletal modifications depend directly on bioelectrical changes, we used inhibitors of ion-transport mechanisms that have previously been shown to modify pHi and Vmem as well as the respective gradients. We inhibited, in stage 10b, Na+/H+-exchangers and Na+-channels with amiloride, V-ATPases with bafilomycin, ATP-sensitive K+-channels with glibenclamide, voltage-dependent L-type Ca2+-channels with verapamil, Cl−-channels with 9-anthroic acid and Na+/K+/2Cl−-cotransporters with furosemide, respectively. The correlations between pHi, Vmem, bMF and MT observed in different follicle-cell types are in line with the correlations resulting from the inhibition experiments. While relative alkalisation and/or hyperpolarisation stabilised the parallel transversal alignment of bMF, acidification led to increasing disorder and to condensations of bMF. On the other hand, relative acidification as well as hyperpolarisation stabilised the longitudinal orientation of MT, whereas alkalisation led to loss of this arrangement and to partial disintegration of MT. Conclusions We conclude that the pHi- and Vmem-changes induced by inhibitors of ion-transport mechanisms simulate bioelectrical changes occurring naturally and leading to the cytoskeletal changes observed during differentiation of the follicle-cell epithelium. Therefore, gradual modifications of electrochemical signals can serve as physiological means to regulate cell and tissue architecture by modifying cytoskeletal patterns.


2016 ◽  
Vol 68 (4) ◽  
Author(s):  
Peng Xu ◽  
Agus Pulung Sasmito ◽  
Boming Yu ◽  
Arun Sadashiv Mujumdar

Treelike structures abound in natural as well as man-made transport systems, which have fascinated multidisciplinary researchers to study the transport phenomena and properties and understand the transport mechanisms of treelike structures for decades. The fluid flow and heat transfer in treelike networks have received an increasing attention over the past decade as the highly efficient transport processes observed in natural treelike structures can provide useful hints for optimal solutions to many engineering and industrial problems. This review paper attempts to present the background and research progress made in recent years on the transport phenomenon in treelike networks as well as technological applications of treelike structures. The subtopics included are optimization of branching structures, scaling laws of treelike networks, and transport properties for laminar flow, turbulent flow, heat conduction, and heat convection in treelike networks. Analytical expressions for the effective transport properties have been derived based on deterministic treelike networks, and the effect of branching parameters on the transport properties of treelike networks has also been discussed. Furthermore, numerical simulation results for treelike microchannel networks are presented as well. The proposed transport properties may be beneficial to understand the transport mechanisms of branching structures and promote the applications of treelike networks in engineering and industry.


2010 ◽  
Vol 299 (1) ◽  
pp. R92-R100 ◽  
Author(s):  
Jens Berger ◽  
Martin Hardt ◽  
Wolfgang G. Clauss ◽  
Martin Fronius

A thin liquid layer covers the lungs of air-breathing vertebrates. Active ion transport processes via the pulmonary epithelial cells regulate the maintenance of this layer. This study focuses on basolateral Cl− uptake mechanisms in native lungs of Xenopus laevis and the involvement of the Na+/K+/2 Cl− cotransporter (NKCC) and HCO3−/Cl− anion exchanger (AE), in particular. Western blot analysis and immunofluorescence staining revealed the expression of the NKCC protein in the Xenopus lung. Ussing chamber experiments demonstrated that the NKCC inhibitors (bumetanide and furosemide) were ineffective at blocking the cotransporter under basal conditions, as well as under pharmacologically stimulated Cl−-secreting conditions (forskolin and chlorzoxazone application). However, functional evidence for the NKCC was detected by generating a transepithelial Cl− gradient. Further, we were interested in the involvement of the HCO3−/Cl− anion exchanger to transepithelial ion transport processes. Basolateral application of DIDS, an inhibitor of the AE, resulted in a significantly decreased the short-circuit current (ISC). The effect of DIDS was diminished by acetazolamide and reduced by increased external HCO3− concentrations. Cl− secretion induced by forskolin was decreased by DIDS, but this effect was abolished in the presence of HCO3−. These experiments indicate that the AE at least partially contributes to Cl− secretion. Taken together, our data show that in Xenopus lung epithelia, the AE, rather than the NKCC, is involved in basolateral Cl− uptake, which contrasts with the common model for Cl− secretion in pulmonary epithelia.


1999 ◽  
Vol 202 (3) ◽  
pp. 247-252 ◽  
Author(s):  
T.M. Clark ◽  
A. Koch ◽  
D.F. Moffett

The ‘stomach’ region of the larval mosquito midgut is divided into histologically distinct anterior and posterior regions. Anterior stomach perfused symmetrically with saline in vitro had an initial transepithelial potential (TEP) of −66 mV (lumen negative) that decayed within 10–15 min to a steady-state TEP near −10 mV that was maintained for at least 1 h. Lumen-positive TEPs were never observed in the anterior stomach. The initial TEP of the perfused posterior stomach was opposite in polarity, but similar in magnitude, to that of the anterior stomach, measuring +75 mV (lumen positive). This initial TEP of the posterior stomach decayed rapidly at first, then more slowly, eventually reversing the electrical polarity of the epithelium as lumen-negative TEPs were recorded in all preparations within 70 min. Nanomolar concentrations of the biogenic amine 5-hydroxytryptamine (5-HT, serotonin) stimulated both regions, causing a negative deflection of the TEP of the anterior stomach and a positive deflection of the TEP of the posterior stomach. Phorbol 12,13-diacetate also caused a negative deflection of the TEP of the anterior stomach, but had no effect on the TEP of the posterior stomach. These data demonstrate that 5-HT stimulates region-specific ion-transport mechanisms in the stomach of Aedes aegypti and suggest that 5-HT coordinates the actions of the Malpighian tubules and midgut in the maintenance of an appropriate hemolymph composition in vivo.


Physiology ◽  
1988 ◽  
Vol 3 (3) ◽  
pp. 97-99
Author(s):  
M Wiederholt

The cornea and lens of the eye are avascular transparent tissues that allow almost unimpeded transmission of light to the retina. The transparency of the cornea is a function of hydration, which in turn is affected by electrolyte transport processes across the cellular barriers.


Physiology ◽  
2017 ◽  
Vol 32 (5) ◽  
pp. 367-379 ◽  
Author(s):  
Julian L. Seifter ◽  
Hsin-Yun Chang

Clinical assessment of acid-base disorders depends on measurements made in the blood, part of the extracellular compartment. Yet much of the metabolic importance of these disorders concerns intracellular events. Intracellular and interstitial compartment acid-base balance is complex and heterogeneous. This review considers the determinants of the extracellular fluid pH related to the ion transport processes at the interface of cells and the interstitial fluid, and between epithelial cells lining the transcellular contents of the gastrointestinal and urinary tracts that open to the external environment. The generation of acid-base disorders and the associated disruption of electrolyte balance are considered in the context of these membrane transporters. This review suggests a process of internal and external balance for pH regulation, similar to that of potassium. The role of secretory gastrointestinal epithelia and renal epithelia with respect to normal pH homeostasis and clinical disorders are considered. Electroneutrality of electrolytes in the ECF is discussed in the context of reciprocal changes in Cl−or non Cl−anions and [Formula: see text].


Micromachines ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1012
Author(s):  
Takuya Mabuchi ◽  
Koki Nakajima ◽  
Takashi Tokumasu

Atomistic analysis of the ion transport in polymer electrolytes for all-solid-state Li-ion batteries was performed using molecular dynamics simulations to investigate the relationship between Li-ion transport and polymer morphology. Polyethylene oxide (PEO) and poly(diethylene oxide-alt-oxymethylene), P(2EO-MO), were used as the electrolyte materials, and the effects of salt concentrations and polymer types on the ion transport properties were explored. The size and number of LiTFSI clusters were found to increase with increasing salt concentrations, leading to a decrease in ion diffusivity at high salt concentrations. The Li-ion transport mechanisms were further analyzed by calculating the inter/intra-hopping rate and distance at various ion concentrations in PEO and P(2EO-MO) polymers. While the balance between the rate and distance of inter-hopping was comparable for both PEO and P(2EO-MO), the intra-hopping rate and distance were found to be higher in PEO than in P(2EO-MO), leading to a higher diffusivity in PEO. The results of this study provide insights into the correlation between the nanoscopic structures of ion solvation and the dynamics of Li-ion transport in polymer electrolytes.


Sign in / Sign up

Export Citation Format

Share Document