AGE-receptor-1 counteracts cellular oxidant stress induced by AGEs via negative regulation of p66shc-dependent FKHRL1 phosphorylation

2008 ◽  
Vol 294 (1) ◽  
pp. C145-C152 ◽  
Author(s):  
Weijing Cai ◽  
John Cijiang He ◽  
Li Zhu ◽  
Xue Chen ◽  
Gary E. Striker ◽  
...  

Advanced glycation end products (AGEs) promote reactive oxygen species (ROS) formation and oxidant stress (OS) in diabetes and aging-related diseases. AGE-induced OS is suppressed by AGER1, an AGE-receptor that counteracts receptor for advanced glycation end products (RAGE) and epidermal growth factor receptor (EGFR)-mediated Shc/Ras signal activation, resulting in decreased OS. Akt, FKHRL1, and antioxidants; e.g., MnSOD, regulate OS. Serine phosphorylation of p66 shc also promotes OS. We examined the effects of two defined AGEs Nε-carboxy-methyl-lysine (CML) and methyl-glyoxal derivatives (MG) on these cellular pathways and their functional relationship to AGER1 in human embryonic kidney cells (HEK293). Stimulation of HEK293 cells with either AGE compound increased phosphorylation of Akt and FKHRL1 by approximately threefold in a redox-dependent manner. The use of p66 shc mutants showed that the AGE-induced effects required Ser-36 phosphorylation of p66 shc. AGE-induced phosphorylation of FKHRL1 led to a 70% downregulation of MnSOD, an effect partially blocked by a phosphatidylinositol 3-kinase inhibitor (LY-294002) and strongly inhibited by an antioxidant ( N-acetylcysteine). These pro-oxidant responses were suppressed in AGER1 overexpressing cells and reappeared when AGER1 expression was reduced by small interfering RNA (siRNA). These studies point to a new pathway for the induction of OS by AGEs involving FKHRL1 inactivation and MnSOD suppression via Ser-36 phosphorylation of p66 shc in human kidney cells. This represents a key mechanism by which AGER1 maintains cellular resistance against OS. Thus the decrease of AGER1 noted in aging and diabetes may further enhance OS and reduce innate antioxidant defenses.

Blood ◽  
2012 ◽  
Vol 119 (25) ◽  
pp. 6136-6144 ◽  
Author(s):  
Weifei Zhu ◽  
Wei Li ◽  
Roy L. Silverstein

Abstract Diabetes mellitus has been associated with platelet hyperreactivity, which plays a central role in the hyperglycemia-related prothrombotic phenotype. The mechanisms responsible for this phenomenon are not established. In the present study, we investigated the role of CD36, a class-B scavenger receptor, in this process. Using both in vitro and in vivo mouse models, we demonstrated direct and specific interactions of platelet CD36 with advanced glycation end products (AGEs) generated under hyperglycemic conditions. AGEs bound to platelet CD36 in a specific and dose-dependent manner, and binding was inhibited by the high-affinity CD36 ligand NO2LDL. Cd36-null platelets did not bind AGE. Using diet- and drug-induced mouse models of diabetes, we have shown that cd36-null mice had a delayed time to the formation of occlusive thrombi compared with wild-type (WT) in a FeCl3-induced carotid artery injury model. Cd36-null mice had a similar level of hyperglycemia and a similar level of plasma AGEs compared with WT mice under this condition, but WT mice had more AGEs incorporated into thrombi. Mechanistic studies revealed that CD36-dependent JNK2 activation is involved in this prothrombotic pathway. Therefore, the results of the present study couple vascular complications in diabetes mellitus with AGE-CD36–mediated platelet signaling and hyperreactivity.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Min Sun ◽  
Yan Li ◽  
Wenjie Bu ◽  
Jindong Zhao ◽  
Jianliang Zhu ◽  
...  

The antidiabetic properties and anti-inflammatory effects of Danzhi Jiangtang Capsules (DJC) have been demonstrated in clinical and laboratory experiments. In this study, we explored whether DJC can ameliorate advanced glycation end products- (AGEs-) mediated cell injury and the precise mechanisms of DJC in treating diabetic nephropathy (DN). Western blot analysis was employed to assess the expressions of iNOS, COX2, and SOCS and the phosphorylation of JAK2, STAT1, and STAT3 in glomerular mesangial cells (GMCs) after treatment with DJC. TNF-α, IL-6, and MCP-1 were determined using double-antibody sandwich ELISA. ROS and NADPH oxidase activity were measured by DCFH-DA assay and lucigenin-enhanced chemiluminescence, respectively. DJC significantly reversed the AGEs-induced expression of COX2 and iNOS. Moreover, DJC inhibited the AGEs-induced JAK2-STAT1/STAT3 activation, resulting in the inhibition of inflammatory cytokines such as IL-6, MCP-1, and TNF-αin a concentration-dependent manner. The ability of DJC to suppress STAT activation was also verified by the observation that DJC significantly increased the SOCS3 protein level. DJC reversed the AGEs-induced accumulation of ROS and NADPH oxidase activity, thus confirming that DJC possesses antioxidant activity. The results suggest that the anti-inflammatory effects of DJC in GMCs may be due to its ability to suppress the JAK2-STAT1/STAT3 cascades and reduce ROS production.


2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Eunsoo Jung ◽  
Wan Seok Kang ◽  
Kyuhyung Jo ◽  
Junghyun Kim

The renal accumulation of advanced glycation end products (AGEs) is a causative factor of various renal diseases, including chronic kidney disease and diabetic nephropathy. AGE inhibitors, such as aminoguanidine and pyridoxamine, have the therapeutic activities for reversing the increase in renal AGE burden. This study evaluated the inhibitory effects of ethyl pyruvate (EP) on methylglyoxal- (MGO-) modified AGE cross-links with proteins in vitro. We also determined the potential activity of EP in reducing the renal AGE burden in exogenously MGO-injected rats. EP inhibited MGO-modified AGE-bovine serum albumin (BSA) cross-links to collagen (IC50=0.19±0.03 mM) in a dose-dependent manner, and its activity was stronger than aminoguanidine (IC50=35.97±0.85 mM). In addition, EP directly trapped MGO (IC50=4.41±0.08 mM) in vitro. In exogenous MGO-injected rats, EP suppressed AGE burden and MGO-induced oxidative injury in renal tissues. These activities of EP on the MGO-mediated AGEs cross-links with protein in vitro and in vivo showed its pharmacological potential for inhibiting AGE-induced renal diseases.


2010 ◽  
Vol 299 (5) ◽  
pp. C1212-C1219 ◽  
Author(s):  
W. Bao ◽  
D. Min ◽  
S. M. Twigg ◽  
N. A. Shackel ◽  
F. J. Warner ◽  
...  

CD147 is a highly glycosylated transmembrane protein that is known to play a role in regulation of many protein families. It has the unique ability to maintain functional activity in both the membrane bound state and in the soluble form. CD147 is known to play a role in regulation of matrix metalloproteinase (MMP) expression, but whether its expression is affected by the diabetic milieu is not known, and its role in regulation of monocyte MMPs in this environment has not been investigated. Therefore, in this study we investigated the effect of advanced glycation end products (AGEs) and high glucose (HG; 25 mM), on monocyte CD147 expression. Culture of THP-1 monocytes in the presence of AGEs or HG significantly increased CD147 at the gene and protein level. THP-1 cell results were confirmed using freshly isolated monocytes from human volunteers. The effect of AGEs and HG on CD147 expression was also mimicked by addition of proinflammatory cytokines. Addition of AGEs or HG also increased expression of monocyte MMP-1 and MMP-9 but not MMP-2. This increase in MMPs was significantly attenuated by inhibition of CD147 using either a small interfering RNA or an anti-CD147 antibody. Inhibition of NF-κB or addition of antibodies to either TNF-α or the receptor for AGE (RAGE) each significantly prevented in a dose-dependent manner the induction of CD147 gene and protein by AGE and also decreased MMP-1 and MMP-9. This novel result shows that AGEs can induce monocyte CD147 expression, an effect mediated by inflammatory pathways and RAGE. Because MMPs play a role in monocyte migration, inhibition of their regulator CD147 may assist in the prevention of diabetic complications, particularly those where monocyte infiltration is an early initiating event.


Mutagenesis ◽  
2020 ◽  
Vol 35 (3) ◽  
pp. 291-297
Author(s):  
Permal Deo ◽  
Varinderpal S Dhillon ◽  
Wai Mun Lim ◽  
Emma L Jaunay ◽  
Leigh Donnellan ◽  
...  

Abstract This study investigated the effect of dietary sugars and advanced glycation end-products (AGE) on telomere dynamics in WIL2-NS cells. Dietary sugars [glucose (Glu) and fructose (Fru); 0.1 M each] were incubated with bovine serum albumin (BSA) (10 mg/ml) at 60 ± 1°C for 6 weeks to generate AGE-BSA. Liquid chromatography-mass spectrometry (LC-MS/MS) analysis showed total AGE levels as 87.74 ± 4.46 nmol/mg and 84.94 ± 4.28 nmol/mg respectively in Glu-BSA and Fru-BSA model. Cell treatment studies using WIL2-NS cells were based on either glucose, fructose (each 2.5–40 mM) or AGE-BSA (200–600 µg/ml) in a dose-dependent manner for 9 days. Telomere length (TL) was measured using qPCR. Nitric oxide (NO) production and tumour necrosis factor-α (TNF-α) levels were measured in WIL2-NS culture medium. An increasing trend for TNF-α and NO production was observed with higher concentration of glucose (R2 = 0.358; P = 0.019; R2 = 0.307; P = 0.027) and fructose (R2 = 0.669; P = 0.001; R2 = 0.339; P = 0.006). A decreasing trend for TL (R2 = 0.828; P = 0.000), and an increasing trend for NO production (R2 = 0.352; P = 0.031) were observed with increasing Glu-BSA concentrations. Fru-BSA treatment did not show significant trend on TL (R2 = 0.135; P = 0.352) with increasing concentration, however, a significant reduction was observed at 600 µg/ml (P < 0.01) when compared to BSA treatment. No trends for TNF-α levels and a decreasing trend on NO production (R2 = 0.5201; P = 0.019) was observed with increasing Fru-BSA treatment. In conclusion, this study demonstrates a potential relationship between dietary sugars, AGEs and telomere attrition. AGEs may also exert telomere shortening through the production of pro-inflammatory metabolites, which ultimately increase the risk of diabetes complications and age-related disease throughout lifespan.


Sign in / Sign up

Export Citation Format

Share Document