Stress protein systems of mammalian cells

1986 ◽  
Vol 250 (1) ◽  
pp. C1-C17 ◽  
Author(s):  
J. R. Subjeck ◽  
T. T. Shyy

Living organisms are known to react to a heat stress by the selective induction in the synthesis of several polypeptides. In this review we list the major stress proteins of mammalian cells that are induced by heat shock and other environments and categorize these proteins into specific subgroups: the major heat shock proteins, the glucose-regulated proteins, and the low-molecular-weight heat shock proteins. Characteristics of the localization and expression of proteins in each of these subgroups are presented. Specifically, the nuclear/nucleolar locale of certain of the major heat shock proteins is considered with respect to their association with RNA and the recovery of cells after a heat exposure. The induction of these major heat shock proteins and the repression of the glucose-regulated proteins as a result of reoxygenation of anoxic cells or by the addition of glucose to glucose-deprived cultures is described. Changes in the expression of these protein systems during embryogenesis and differentiation in mammalian and nonmammalian systems is summarized, and the protective role that some of these proteins appear to play in protecting the animal against the lethal effects of a severe heat treatment and against teratogenesis is critically examined.

2012 ◽  
Vol 302 (3) ◽  
pp. H506-H514 ◽  
Author(s):  
Qingbo Xu ◽  
Bernhard Metzler ◽  
Marjan Jahangiri ◽  
Kaushik Mandal

In response to stress stimuli, mammalian cells activate an ancient signaling pathway leading to the transient expression of heat shock proteins (HSPs). HSPs are a family of proteins serving as molecular chaperones that prevent the formation of nonspecific protein aggregates and assist proteins in the acquisition of their native structures. Physiologically, HSPs play a protective role in the homeostasis of the vessel wall but have an impact on immunoinflammatory processes in pathological conditions involved in the development of atherosclerosis. For instance, some members of HSPs have been shown to have immunoregulatory properties and modification of innate and adaptive response to HSPs, and can protect the vessel wall from the disease. On the other hand, a high degree of sequence homology between microbial and mammalian HSPs, due to evolutionary conservation, carries a risk of misdirected autoimmunity against HSPs expressed on the stressed cells of vascular endothelium. Furthermore, HSPs and anti-HSP antibodies have been shown to elicit production of proinflammatory cytokines. Potential therapeutic use of HSP in prevention of atherosclerosis involves achieving optimal balance between protective and immunogenic effects of HSPs and in the progress of research on vaccination. In this review, we update the progress of studies on HSPs and the integrity of the vessel wall, discuss the mechanism by which HSPs exert their role in the disease development, and highlight the potential clinic translation in the research field.


2017 ◽  
Vol 373 (1738) ◽  
pp. 20160522 ◽  
Author(s):  
A. Graham Pockley ◽  
Brian Henderson

Extracellular cell stress proteins are highly conserved phylogenetically and have been shown to act as powerful signalling agonists and receptors for selected ligands in several different settings. They also act as immunostimulatory ‘danger signals’ for the innate and adaptive immune systems. Other studies have shown that cell stress proteins and the induction of immune reactivity to self-cell stress proteins can attenuate disease processes. Some proteins (e.g. Hsp60, Hsp70, gp96) exhibit both inflammatory and anti-inflammatory properties, depending on the context in which they encounter responding immune cells. The burgeoning literature reporting the presence of stress proteins in a range of biological fluids in healthy individuals/non-diseased settings, the association of extracellular stress protein levels with a plethora of clinical and pathological conditions and the selective expression of a membrane form of Hsp70 on cancer cells now supports the concept that extracellular cell stress proteins are involved in maintaining/regulating organismal homeostasis and in disease processes and phenotype. Cell stress proteins, therefore, form a biologically complex extracellular cell stress protein network having diverse biological, homeostatic and immunomodulatory properties, the understanding of which offers exciting opportunities for delivering novel approaches to predict, identify, diagnose, manage and treat disease. This article is part of the theme issue ‘Heat shock proteins as modulators and therapeutic targets of chronic disease: an integrated perspective’.


2020 ◽  
Vol 18 (6) ◽  
pp. 79-82
Author(s):  
E. V. LOSKUTOVA ◽  
◽  
Kh. M. VAKHITOV ◽  

The present literature review summarizes current information on the role of heat shock proteins in the genesis of physiological and pathological states in humans and animals. Their important role in controlling the process of proper protein folding into a spatial structure is noted, which is of key importance for the course of adaptive reactions. According to a number of sources, heat shock proteins also play a protective role in relation to the mitochondrial and nuclear structures of cells of various organs and systems. There is evidence of the heat shock proteins participation in the cytokine regulation system, the processes of peroxide homeostasis, energy exchange, etc. The authors suggest that studying their level in a premature newborn will create a more complete picture of the nature of stress reactions course and characteristics in the early neonatal period.


1998 ◽  
Vol 66 (6) ◽  
pp. 3024-3027 ◽  
Author(s):  
M. Walid Qoronfleh ◽  
Carol A. Bortner ◽  
Paul Schwartzberg ◽  
Brian J. Wilkinson

ABSTRACT Antibodies to Staphylococcus aureus heat shock proteins (Hsps) are present in the sera of patients with S. aureus endocarditis (M. W. Qoronfleh, W. Weraarchakul, and B. J. Wilkinson, Infect. Immun. 61:1567–1570, 1993). Although these proteins are immunogenic, their role in infection has not been established. We developed a cell culture system as a model to examine the potential involvement of staphylococcal Hsps in the initial events of infection. This study supports a model in which a clinical endocarditis isolate responds to host cell signals by selectively regulating the synthesis of numerous proteins, including the stress proteins Hsp60 (GroEL homolog) and Hsp70 (DnaK homolog) and a unique 58-kDa protein.


1994 ◽  
Vol 14 (10) ◽  
pp. 6552-6560
Author(s):  
S K Rabindran ◽  
J Wisniewski ◽  
L Li ◽  
G C Li ◽  
C Wu

The intracellular level of free heat shock proteins, in particular the 70-kDa stress protein family, has been suggested to be the basis of an autoregulatory mechanism by which the cell measures the level of thermal stress and regulates the synthesis of heat shock proteins. It has been proposed that the DNA-binding and oligomeric state of the heat shock transcription factor (HSF) is a principal step in the induction pathway that is responsive to the level of 70-kDa stress protein. To test this hypothesis, we investigated the association between HSF and 70-kDa stress protein by means of a coimmunoprecipitation assay. We found that 70-kDa stress proteins associate to similar extents with both latent and active forms of HSF, although unlike other 70-kDa stress protein substrates, the association with HSF was not significantly disrupted in the presence of ATP. Gel mobility shift assays indicated that active HSF trimers purified from a bacterial expression system could not be substantially deactivated in vitro with purified 70-kDa stress protein and ATP. In addition, elevated concentrations of hsp70 alone could not significantly inhibit induction of the DNA-binding activity of endogenous HSF in cultured rat cells, and the induction was also not inhibited in cultured rat cells or Drosophila cells containing elevated levels of all members of the heat shock protein family. However, the deactivation of HSF to the non-DNA-binding state after prolonged heat stress or during recovery could be accelerated by increased levels of heat shock proteins. Hence, the level of heat shock proteins may affect the rate of disassembly of HSF trimers, but another mechanism, as yet undefined, appears to control the onset of the oligomeric transitions.


1985 ◽  
Vol 5 (7) ◽  
pp. 1571-1581 ◽  
Author(s):  
W J Welch ◽  
J R Feramisco

Mammalian cells show a complex series of transcriptional and translational switching events in response to heat shock treatment which ultimately lead to the production and accumulation of a small number of proteins, the so-called heat shock (or stress) proteins. We investigated the heat shock response in both qualitative and quantitative ways in cells that were pretreated with drugs that specifically disrupt one or more of the three major cytoskeletal networks. (These drugs alone, cytochalasin E and colcemid, do not result in induction of the heat shock response.) Our results indicated that disruption of the actin microfilaments, the vimentin-containing intermediate filaments, or the microtubules in living cells does not hinder the ability of the cell to undergo an apparently normal heat shock response. Even when all three networks were simultaneously disrupted (resulting in a loose, baglike appearance of the cells), the cells still underwent a complete heat shock response as assayed by the appearance of the heat shock proteins. In addition, the major induced 72-kilodalton heat shock protein was efficiently translocated from the cytoplasm into its proper location in the nucleus and nucleolus irrespective of the condition of the three cytoskeletal elements.


2017 ◽  
Vol 5 (3) ◽  
pp. 279-284
Author(s):  
Martin A. Meenakshi ◽  
Erik G. Seth

Myocardial ischemia reperfusion injury I/R adversely affects cardiac function. Heat shock proteins (HSPs) are a highly conserved family of proteins with diverse functions expressed by all cells exposed to environmental stress including myocardila injury. We investigated release of small constitutive heat shock proteins (HSPs) from mouse myocardium and the effects of TAT-HSP70 after myocardial I/R via occluding the left coronary artery (LAD). The results support the hypothesis that elevated HSPs in myocardium after ischemia and reperfusion and contributes to the inflammatory mechanism of myocardial functional injury. Further investigation of the significance of HSPs accumulation to the evolution of myocardial injury.


Genome ◽  
1991 ◽  
Vol 34 (6) ◽  
pp. 940-943 ◽  
Author(s):  
Daryl J. Somers ◽  
Randal W. Giroux ◽  
W. Gary Filion

Opuntia ficus indica roots grown hydroponically at 20 or 30 °C were subjected to a range of heat-shock temperatures as high as 50 °C for 2 h. Roots grown at 30 °C sustained a greater level of total protein synthesis than did 20 °C-grown roots following heat-shock treatments ≥ 45 °C. The 30 °C-grown roots synthesized 31 families of heat-shock proteins between 38 and 47 °C in comparison with 20 °C-grown roots, which synthesized 19 families of heat-shock proteins at 45 °C. In both groups of roots, the heat-shock response was dominated equally by the 71–75 and a 62 kDa heat-shock protein families. In addition, the 20 °C-grown roots expressed 11 families of cold-shock proteins following 2 h at 4 °C, five of which had similar relative molecular masses to heat-shock protein families. There were numerous qualitative differences in the heat shock protein profiles between the roots grown at 20 and 30 °C; the 30 °C-grown roots expressed several unique heat shock protein families.Key words: heat-shock protein(s), cactus, thermal stress, acclimation.


Parasitology ◽  
2001 ◽  
Vol 122 (5) ◽  
pp. 583-588 ◽  
Author(s):  
L. VARGAS-PARADA ◽  
C. F. SOLÍS ◽  
J. P. LACLETTE

Heat shock and stress responses are documented for the first time in larval stages of the cestodes Taenia solium and Taenia crassiceps. Radioactive metabolic labelling after in vitro incubation of cysts at 43 °C, revealed the induction of heat shock proteins. In T. crassiceps, the major heat shock proteins were 80, 70 and 60 kDa. After prolonged incubation, a set of low molecular weight heat shock proteins (27, 31, 33 and 38 kDa), were also induced. In vitro incubation of cysts at 4 °C, induced the synthesis of stress proteins ranging from 31 to 80 kDa, indicating the parasite is also able to respond to cold shock. T. solium cysts exposure to temperature stress also resulted in an increased synthesis of 2 major heat shock proteins of 80 and 70 kDa. Western blots using the excretory–secretory products of T. solium showed that 2 heat shock proteins were recognized by antibodies in the sera of cysticercotic patients: one of 66 kDa and another migrating close to the run front. The T. solium 66 kDa protein was also recognized by specific antibodies directed to a 60 kDa bacterial heat shock protein, suggesting that it belongs to this family of proteins.


Sign in / Sign up

Export Citation Format

Share Document