scholarly journals Extracellular cell stress (heat shock) proteins—immune responses and disease: an overview

2017 ◽  
Vol 373 (1738) ◽  
pp. 20160522 ◽  
Author(s):  
A. Graham Pockley ◽  
Brian Henderson

Extracellular cell stress proteins are highly conserved phylogenetically and have been shown to act as powerful signalling agonists and receptors for selected ligands in several different settings. They also act as immunostimulatory ‘danger signals’ for the innate and adaptive immune systems. Other studies have shown that cell stress proteins and the induction of immune reactivity to self-cell stress proteins can attenuate disease processes. Some proteins (e.g. Hsp60, Hsp70, gp96) exhibit both inflammatory and anti-inflammatory properties, depending on the context in which they encounter responding immune cells. The burgeoning literature reporting the presence of stress proteins in a range of biological fluids in healthy individuals/non-diseased settings, the association of extracellular stress protein levels with a plethora of clinical and pathological conditions and the selective expression of a membrane form of Hsp70 on cancer cells now supports the concept that extracellular cell stress proteins are involved in maintaining/regulating organismal homeostasis and in disease processes and phenotype. Cell stress proteins, therefore, form a biologically complex extracellular cell stress protein network having diverse biological, homeostatic and immunomodulatory properties, the understanding of which offers exciting opportunities for delivering novel approaches to predict, identify, diagnose, manage and treat disease. This article is part of the theme issue ‘Heat shock proteins as modulators and therapeutic targets of chronic disease: an integrated perspective’.

1986 ◽  
Vol 250 (1) ◽  
pp. C1-C17 ◽  
Author(s):  
J. R. Subjeck ◽  
T. T. Shyy

Living organisms are known to react to a heat stress by the selective induction in the synthesis of several polypeptides. In this review we list the major stress proteins of mammalian cells that are induced by heat shock and other environments and categorize these proteins into specific subgroups: the major heat shock proteins, the glucose-regulated proteins, and the low-molecular-weight heat shock proteins. Characteristics of the localization and expression of proteins in each of these subgroups are presented. Specifically, the nuclear/nucleolar locale of certain of the major heat shock proteins is considered with respect to their association with RNA and the recovery of cells after a heat exposure. The induction of these major heat shock proteins and the repression of the glucose-regulated proteins as a result of reoxygenation of anoxic cells or by the addition of glucose to glucose-deprived cultures is described. Changes in the expression of these protein systems during embryogenesis and differentiation in mammalian and nonmammalian systems is summarized, and the protective role that some of these proteins appear to play in protecting the animal against the lethal effects of a severe heat treatment and against teratogenesis is critically examined.


1998 ◽  
Vol 66 (6) ◽  
pp. 3024-3027 ◽  
Author(s):  
M. Walid Qoronfleh ◽  
Carol A. Bortner ◽  
Paul Schwartzberg ◽  
Brian J. Wilkinson

ABSTRACT Antibodies to Staphylococcus aureus heat shock proteins (Hsps) are present in the sera of patients with S. aureus endocarditis (M. W. Qoronfleh, W. Weraarchakul, and B. J. Wilkinson, Infect. Immun. 61:1567–1570, 1993). Although these proteins are immunogenic, their role in infection has not been established. We developed a cell culture system as a model to examine the potential involvement of staphylococcal Hsps in the initial events of infection. This study supports a model in which a clinical endocarditis isolate responds to host cell signals by selectively regulating the synthesis of numerous proteins, including the stress proteins Hsp60 (GroEL homolog) and Hsp70 (DnaK homolog) and a unique 58-kDa protein.


1994 ◽  
Vol 14 (10) ◽  
pp. 6552-6560
Author(s):  
S K Rabindran ◽  
J Wisniewski ◽  
L Li ◽  
G C Li ◽  
C Wu

The intracellular level of free heat shock proteins, in particular the 70-kDa stress protein family, has been suggested to be the basis of an autoregulatory mechanism by which the cell measures the level of thermal stress and regulates the synthesis of heat shock proteins. It has been proposed that the DNA-binding and oligomeric state of the heat shock transcription factor (HSF) is a principal step in the induction pathway that is responsive to the level of 70-kDa stress protein. To test this hypothesis, we investigated the association between HSF and 70-kDa stress protein by means of a coimmunoprecipitation assay. We found that 70-kDa stress proteins associate to similar extents with both latent and active forms of HSF, although unlike other 70-kDa stress protein substrates, the association with HSF was not significantly disrupted in the presence of ATP. Gel mobility shift assays indicated that active HSF trimers purified from a bacterial expression system could not be substantially deactivated in vitro with purified 70-kDa stress protein and ATP. In addition, elevated concentrations of hsp70 alone could not significantly inhibit induction of the DNA-binding activity of endogenous HSF in cultured rat cells, and the induction was also not inhibited in cultured rat cells or Drosophila cells containing elevated levels of all members of the heat shock protein family. However, the deactivation of HSF to the non-DNA-binding state after prolonged heat stress or during recovery could be accelerated by increased levels of heat shock proteins. Hence, the level of heat shock proteins may affect the rate of disassembly of HSF trimers, but another mechanism, as yet undefined, appears to control the onset of the oligomeric transitions.


Genome ◽  
1991 ◽  
Vol 34 (6) ◽  
pp. 940-943 ◽  
Author(s):  
Daryl J. Somers ◽  
Randal W. Giroux ◽  
W. Gary Filion

Opuntia ficus indica roots grown hydroponically at 20 or 30 °C were subjected to a range of heat-shock temperatures as high as 50 °C for 2 h. Roots grown at 30 °C sustained a greater level of total protein synthesis than did 20 °C-grown roots following heat-shock treatments ≥ 45 °C. The 30 °C-grown roots synthesized 31 families of heat-shock proteins between 38 and 47 °C in comparison with 20 °C-grown roots, which synthesized 19 families of heat-shock proteins at 45 °C. In both groups of roots, the heat-shock response was dominated equally by the 71–75 and a 62 kDa heat-shock protein families. In addition, the 20 °C-grown roots expressed 11 families of cold-shock proteins following 2 h at 4 °C, five of which had similar relative molecular masses to heat-shock protein families. There were numerous qualitative differences in the heat shock protein profiles between the roots grown at 20 and 30 °C; the 30 °C-grown roots expressed several unique heat shock protein families.Key words: heat-shock protein(s), cactus, thermal stress, acclimation.


Parasitology ◽  
2001 ◽  
Vol 122 (5) ◽  
pp. 583-588 ◽  
Author(s):  
L. VARGAS-PARADA ◽  
C. F. SOLÍS ◽  
J. P. LACLETTE

Heat shock and stress responses are documented for the first time in larval stages of the cestodes Taenia solium and Taenia crassiceps. Radioactive metabolic labelling after in vitro incubation of cysts at 43 °C, revealed the induction of heat shock proteins. In T. crassiceps, the major heat shock proteins were 80, 70 and 60 kDa. After prolonged incubation, a set of low molecular weight heat shock proteins (27, 31, 33 and 38 kDa), were also induced. In vitro incubation of cysts at 4 °C, induced the synthesis of stress proteins ranging from 31 to 80 kDa, indicating the parasite is also able to respond to cold shock. T. solium cysts exposure to temperature stress also resulted in an increased synthesis of 2 major heat shock proteins of 80 and 70 kDa. Western blots using the excretory–secretory products of T. solium showed that 2 heat shock proteins were recognized by antibodies in the sera of cysticercotic patients: one of 66 kDa and another migrating close to the run front. The T. solium 66 kDa protein was also recognized by specific antibodies directed to a 60 kDa bacterial heat shock protein, suggesting that it belongs to this family of proteins.


1993 ◽  
Vol 71 (1-2) ◽  
pp. 43-50 ◽  
Author(s):  
Robert L. Carlone ◽  
Robert P. Boulianne ◽  
K. Marion Vijh ◽  
Heather Karn ◽  
Gordon A. D. Fraser

Morphogenetic effects of retinoic acid (RA) on the urodele amphibian limb regenerate pattern have been well documented, but little is known regarding the mechanism of this action of RA at the molecular level. Since exogenous RA, at concentrations sufficient to cause proximalization, represents a significant stress to newts and has been shown previously to elicit increased synthesis of heat shock proteins (HSPs) in mouse embryo limb buds, we investigated the effects of this putative morphogen on the synthesis of members of the 70-kilodalton (70-kDa) stress protein family in amputated forelimbs of the newt Notophthalmus viridescens. Injection (i.p.) of RA in dimethyl sulfoxide (DMSO), at a dose sufficient to cause significant proximal–distal reduplication of the pattern in 50% of animals treated, resulted in increased synthesis and accumulation of a 73-kDa protein with a pi of approximately 6.75. The synthesis of this same protein is increased in limb tissues as a result of a brief 35 °C heat shock. This protein is electrophoretically distinct from the newt HSP 70 family members, displays a different partial peptide map, and shows no immunological cross-reactivity with an anti-human HSP 70 monoclonal antibody. It may be a member of a separate family of 70- to 73-kDa HSPs. Interestingly, the synthesis of this protein is increased and it is more abundant in control, proximal moderate-early bud stage regenerates at 6 days after i.p. injection of DMSO than in similarly treated distal regenerates. This protein is, in addition, increased in distal regenerates to proximal levels by a prior injection of RA. The significance of these findings with regard to the possible role of stress proteins in the morphogenetic processes underlying limb regeneration is discussed.Key words: heat shock, limb regeneration, retinoic acid, pattern formation, newt.


1990 ◽  
Vol 68 (4) ◽  
pp. 804-807 ◽  
Author(s):  
Edward W. Khandjian

Exposure of primary mouse kidney cell cultures to acidic medium (pH 5.5) induced the expression of a 70 kilodalton (kDa) protein. This protein was identified as the major inducible heat-shock protein 70 (hsp70) by immunoprecipitation with anti-hsp70 serum and Northern blot analysis with a hsp70 cDNA probe. Maximum induction of the 70-kDa protein at pH 5.5 after 240 min was about 30% of that observed after 60 min of thermal treatment at 43 °C. In addition, there was an apparent induction of the glucose-regulated proteins (GRPs) of 76–78 and 98–100 kDa, but not of the other hsps. This subset induction of the heat-shock response by acidic medium suggests that different mechanisms are responsible for the induction of the various families of hsps.Key words: heat-shock proteins, stress proteins, acidic induction, viral infection, mouse kidney cells.


2020 ◽  
Vol 16 (1) ◽  
Author(s):  
Wei Hu ◽  
Tian Ye ◽  
Yanzhen Yang ◽  
Ben Liu ◽  
Wenya Zheng

Abstract Background Transportation is necessary to introduce new breeds of goats to the farm and move the adult meat goat from the farm to the slaughterhouse. However, these actions may give rise to transport stress. Heat shock proteins (HSPs) are playing some important regulate roles during transport stress. The aim of this study was to evaluate the effects of transport stress on the pathological injury and HSPs expression in the stomach of goats. A total of three batches of Ganxi goats from western Jiangxi province were enrolled in this study. For each batch, twelve healthy adult male goats were randomly divided into three groups (four goats per batch and per group): Control group, stress group transported during 2 h and stress group transported during 6 h. Results Our results showed that the different degrees of stomach walls damage, with the change of expression levels of heat shock protein 27 (HSP27), heat shock protein 70 (HSP70) and heat shock protein 90 (HSP90), occurred after goats transportation. In rumen, the mRNA and protein expressions of HSP27 and HSP70 were increased after transport stress, but not HSP90. In reticulum, all three HSPs mRNA and protein levels were upregulated after 2 h transport, but decreased after 6 h transport. In omasum, HSP27 and HSP70 mRNA and protein were increased after transport stress, however, HSP90 mRNA level only had a slightly enhancement after transport stress. In abomasum, HSP70 and HSP90 mRNA and protein levels were increased after transport stress, but HSP27 was decreased after transport stress. Conclusions Taken together, these results revealed that the pathological changes in the gastric tissues and the stomach HSPs expression in goats are related to transport stress and duration. Moreover, this study also provides some new data to advocate reducing transport stress of goats and improving animal welfare.


1993 ◽  
Vol 339 (1289) ◽  
pp. 327-333 ◽  

In response to either elevated temperatures or several other metabolic insults, cells from all organisms respond by increasing the expression of so-called heat shock proteins (hsp or stress proteins). In general, the stress response appears to represent a universal cellular defence mechanism. The increased expression and accumulation of the stress proteins provides the cell with an added degree of protection. Studies over the past few years have revealed a role for some of the stress proteins as being intimately involved in protein maturation. Members of the hsp 70 family, distributed throughout various intracellular compartments, interact transiently with other proteins undergoing synthesis, translocation, or higher ordered assembly. Although not yet proven, it has been suggested that members of the hsp 70 family function to slow down or retard the premature folding of proteins in the course of synthesis and translocation. Yet another family of stress proteins, the hsp 60 or GroEL proteins (chaperonins), appear to function as catalysts of protein folding. Here I discuss the role of those stress proteins functioning as molecular chaperones, both within the normal cell and in the cell subjected to metabolic stress.


Sign in / Sign up

Export Citation Format

Share Document