Energy expenditure of longitudinal smooth muscle of rabbit urinary bladder

1987 ◽  
Vol 252 (1) ◽  
pp. C88-C96 ◽  
Author(s):  
I. R. Wendt ◽  
C. L. Gibbs

Heat production, oxygen consumption, and lactate production of longitudinal smooth muscle from rabbit urinary bladder has been measured at 27 degrees C. In isometric contractions (initiated by 1-Hz electrical stimulation) ranging in duration from 2 to 300 s, total energy expenditure correlated linearly with the force-time integral. For any given force-time integral oxygen consumption could account for only approximately 60% of the total energy measured as heat production. A substantial contribution of aerobic lactate production to the total energy flux was observed. This lactate production was also linearly correlated with force-time integral and was of sufficient magnitude to account for the discrepancy between total energy expenditure determined as heat production and oxygen consumption. The suprabasal rate of energy expenditure during the maintenance of force was approximately 2.6 mW/g and remained constant throughout contractions of up to 5-min duration, suggesting that in this muscle there is no change in the energetic cost of force maintenance with increasing duration of contraction. The rate of energy expenditure during the initial period of force development was, however, about twofold greater than that during subsequent force maintenance, indicating that there is an extra energy cost associated with the activation of contraction and development of force above that required for force maintenance.

1987 ◽  
Vol 60 (6) ◽  
pp. 797-803 ◽  
Author(s):  
H Suga ◽  
Y Goto ◽  
T Nozawa ◽  
Y Yasumura ◽  
S Futaki ◽  
...  

1989 ◽  
Vol 256 (4) ◽  
pp. C719-C727 ◽  
Author(s):  
I. R. Wendt

Suprabasal heat production, oxygen consumption, and lactate production were measured, together with force, in 30-s isometric contractions of longitudinal smooth muscle from rabbit urinary bladder at 27 degrees C. Either glucose or pyruvate was provided as exogenous substrate. Under aerobic conditions with glucose as substrate, force averaged 95 mN/mm2 and heat production 121 mJ/g. Oxygen consumption (0.18 mumol/g) could account for only two-thirds of the total energy expenditure represented as heat production. The remaining one-third was accounted for by aerobic lactate production (0.36 mumol/g). When pyruvate replaced glucose as substrate, both the force developed and the total heat liberated were unchanged. Oxygen consumption, however, increased by approximately 40% (to 0.25 mumol/g) and was able to fully account for the measured heat production. The frequency of spontaneous contractions under aerobic conditions was always reduced in the presence of pyruvate. Under anaerobic conditions force was essentially unaltered, and heat production was only slightly reduced (101 mJ/g) with glucose present. Lactate production increased threefold over that under aerobic conditions. With pyruvate as substrate both force and heat production declined markedly (to less than 5% of the aerobic values). The results indicate that under aerobic conditions and with glucose as substrate, smooth muscle of rabbit urinary bladder generates about one-third of its suprabasal energy requirements through glycolysis and that glycolysis can be further accelerated under anaerobic conditions to provide sufficient energy to sustain contraction. If pyruvate replaces glucose as substrate, the metabolism shifts to being virtually all oxidative, and contraction can no longer be sustained in the absence of oxygen.


2002 ◽  
Vol 283 (1) ◽  
pp. H324-H330 ◽  
Author(s):  
Jeffrey W. Holmes ◽  
Mark Hünlich ◽  
Gerd Hasenfuss

We tested the hypothesis that economy and efficiency are independent of length in intact cardiac muscle over its normal working range. We measured force, force-time integral, force-length area, and myocardial oxygen consumption in eight isometrically contracting rabbit right ventricular papillary muscles. 2,3-Butanedione monoxime was used to partition nonbasal oxygen consumption into tension-independent and tension-dependent components. Developed force, force-time integral, and force-length area increased by factors of 2.4, 2.7, and 4.8, respectively, as muscle length was increased from 90% to 100% maximal length, whereas tension-dependent oxygen consumption increased only 1.6-fold. Economy (the ratio of force-time integral to tension-dependent oxygen consumption) increased significantly with muscle length, as did contractile efficiency, the ratio of force-length area to tension-dependent oxygen consumption. The average force-length area-nonbasal oxygen consumption intercept was more than the twice tension-independent oxygen consumption. We conclude that economy and efficiency increase with length in rabbit myocardium. This conclusion is consistent with published data in isolated rabbit and dog hearts but at odds with studies in skinned myocardium.


1996 ◽  
Vol 81 (6) ◽  
pp. 2555-2564 ◽  
Author(s):  
Gordon L. Warren ◽  
Jay H. Williams ◽  
Christopher W. Ward ◽  
Hideki Matoba ◽  
Christopher P. Ingalls ◽  
...  

Warren III, Gordon L., Jay H. Williams, Christopher W. Ward, Hideki Matoba, Christopher P. Ingalls, Karl M. Hermann, and R. B. Armstrong. Decreased contraction economy in mouse EDL muscle injured by eccentric contractions. J. Appl. Physiol. 81(6): 2555–2564, 1996.—The objective of this study was to find out whether basal and/or active energy metabolism are altered in isolated mouse extensor digitorum longus muscle injured by eccentric (Ecc) contractions. Measurements of basal O2 consumption and isometric tetanus O2 recovery cost were made at 25°C on muscles that had done either 10 Ecc, 10 isometric (Iso), or no contractions (No). In parallel experiments, rates of lactate and pyruvate production were measured to estimate the anaerobic contribution. Basal O2 consumption was unaffected by the type of protocol performed ( P = 0.07). However, the tetanus O2 cost per force-time integral was elevated by 30–36% for the Ecc protocol muscles over that for the Iso and No protocol muscles. When including the increased lactate production by the Ecc protocol muscles, the total energetic cost per force-time integral was 53% higher than that for the Iso protocol muscles [2.35 ± 0.17 vs. 1.54 ± 0.18 μmol O2/(N ⋅ m ⋅ s)]. The decreased economy was attributed to two factors. First, in skinned fibers isolated from the injured muscles, the ratio of maximal actomyosin adenosinetriphosphatase activity to force production was up by 37.5%, suggesting uncoupling of ATP hydrolysis from force production. Second, increased reliance on anaerobic metabolism along with the fluorescent microscopic study of mitochondrial membrane potential and histochemical study of ATP synthase suggested an uncoupling of oxidative phosphorylation in the injured muscles.


1988 ◽  
Vol 255 (4) ◽  
pp. C536-C542 ◽  
Author(s):  
J. S. Walker ◽  
I. R. Wendt ◽  
C. L. Gibbs

Heat production, unloaded shortening velocity (Vus), and load-bearing capacity (LBC) were studied in the isolated rat anococcygeus muscle during isometric contractions at 27 degrees C. The relation between the total suprabasal heat produced and the stress-time integral for isometric contractions of various durations was curvilinear, demonstrating a decreasing slope as contractile duration increased. The rate of heat production at 600 s was approximately 68% of the peak value of 6.55 mW/g that occurred at 10 s. At the same time, force rose from a mean of 92 mN/mm2 at 10 s to a value of 140 mN/mm2 at 600 s. This produced a nearly threefold increase in the economy of force maintenance. The decline in the rate of heat production was accompanied by a decline in Vus from 0.56 Lo/s at 10 s to 0.28 Lo/s at 600 s, where Lo is the length for optimal force development. This suggests the fall in the rate of heat production was caused, at least in part, by a slowing of cross-bridge kinetics. The ratio of LBC to developed tension at 10 s was not significantly different from the ratio at 600 s, suggesting that the increase in tension was due to an increased number of attached cross bridges. The decline in heat production, therefore, appears contradictory, since an increased number of attached cross bridges would predict an increased rate of energy expenditure. The observations can be reconciled if either 1) the increase in force is caused by a progressive increase in the attachment time of a constant number of cross bridges that cycle at a lower frequency or 2) the decline in energy expenditure caused by the slowing of cross-bridge cycling is sufficient to mask the increase caused by the recruitment of additional cross bridges.


Author(s):  
A. De Haan ◽  
J. E. Van Doorn ◽  
P. A. Huijing ◽  
R. D. Woittiez ◽  
H. G. Westra

1999 ◽  
Vol 276 (3) ◽  
pp. H998-H1011 ◽  
Author(s):  
Amir Landesberg ◽  
Samuel Sideman

The well-known linear relationship between oxygen consumption and force-length area or the force-time integral is analyzed here for isometric contractions. The analysis, which is based on a biochemical model that couples calcium kinetics with cross-bridge cycling, indicates that the change in the number of force-generating cross bridges with the change in the sarcomere length depends on the force generated by the cross bridges. This positive-feedback phenomenon is consistent with our reported cooperativity mechanism, whereby the affinity of the troponin for calcium and, hence, cross-bridge recruitment depends on the number of force-generating cross bridges. Moreover, it is demonstrated that a model that does not include a feedback mechanism cannot describe the dependence of energy consumption on the loading conditions. The cooperativity mechanism, which has been shown to determine the force-length relationship and the related Frank-Starling law, is shown here to provide the basis for the regulation of energy consumption in the cardiac muscle.


1994 ◽  
Vol 266 (3) ◽  
pp. H1047-H1054 ◽  
Author(s):  
A. Higashiyama ◽  
M. W. Watkins ◽  
Z. Chen ◽  
M. M. LeWinter

Myocardial energy consumption for nonmechanical activity (excitation-contraction coupling) has been shown to be length dependent in isolated muscle studies but no more than minimally affected by preload in the whole heart. However, unloaded O2 consumption (VO2, which is used to estimate nonmechanical VO2 in whole heart) may not be accurate for quantifying nonmechanical energy consumption, because it contains VO2 for residual cross-bridge cycling. To more accurately determine the influence of left ventricular (LV) diastolic volume on nonmechanical VO2 in whole heart, we employed a new method for quantifying nonmechanical VO2, using the drug 2,3-butanedione monoxime (BDM). We measured VO2 and force-time integral during infusion of BDM (< or = 5 mM) at high (VH) and low LV volumes (VL) in 16 excised isovolumically contracting red blood cell-perfused rabbit ventricles. LV end-diastolic pressure was 9.7 +/- 4.6 and 3.8 +/- 2.8 (SD) mmHg at VH and VL, respectively. Nonmechanical VO2, estimated as the VO2-axis intercept of the linear VO2-force-time integral relation obtained during BDM infusion, did not differ significantly between VH and VL (0.0137 +/- 0.0083 and 0.0132 +/- 0.0090 ml O2.beat-1 x 100 gLV-1, P = 0.702). A multiple linear regression analysis for the pooled data confirmed this finding (P = 0.361). We conclude that, in the rabbit heart, LV diastolic volume does not importantly affect nonmechanical energy consumption over a physiological range of LV end-diastolic pressure. This indicates that length-dependent activation does not have an energetic cost in whole rabbit heart and suggests that its predominant mechanism is increased Ca2+ affinity for the contractile proteins.


2002 ◽  
Vol 87 (5) ◽  
pp. 2271-2278 ◽  
Author(s):  
Lisa Griffin ◽  
Sharlene Godfrey ◽  
Christine K. Thomas

The pattern of seven pulses that elicited maximal thenar force was determined for control muscles and those that have been paralyzed chronically by spinal cord injury. For each subject group ( n = 6), the peak force evoked by two pulses occurred at a short interval (5–15 ms; a “doublet”), but higher mean relative forces were achieved in paralyzed versus control muscles (41.4 ± 3.9% vs. 22.7 ± 2.0% maximal). Thereafter, longer intervals evoked peak force in each type of muscle (mean: 35 ± 1 ms, 36 ± 2 ms, respectively). With seven pulses, paralyzed and control muscles reached 76.4 ± 5.6% and 57.0 ± 2.6% maximal force, respectively. These force differences resulted from significantly greater doublet/twitch and doublet/tetanic force ratios in paralyzed (2.73 ± 0.08, 0.35 ± 0.03) compared with control muscles (2.07 ± 0.07, 0.25 ± 0.01). The greater force enhancement produced in paralyzed muscles with two closely spaced pulses may relate to changes in muscle stiffness and calcium metabolism. Peak force-time integrals were also achieved with an initial short interpulse interval, followed by longer intervals. The postdoublet intervals that produced peak force-time integrals in paralyzed and control muscles were longer than those for peak force, however (77 ± 3 ms, 95 ± 4 ms, respectively). These data show that the pulse patterns that maximize force and force-time integral in paralyzed muscles are similar to those that maximize these parameters in single motor units and various whole muscles across species. Thus the changes in neuromuscular properties that occur with chronic paralysis do not strongly influence the pulse pattern that optimizes muscle force or force-time integral.


Sign in / Sign up

Export Citation Format

Share Document