Survey of osmolytes in renal cell lines

1988 ◽  
Vol 255 (2) ◽  
pp. C181-C191 ◽  
Author(s):  
T. Nakanishi ◽  
R. S. Balaban ◽  
M. B. Burg

In renal medullas during antidiuresis, the extracellular fluid is hyperosmotic because of high concentrations of NaCl and urea. Under those conditions, the cells contain high concentrations of organic osmolytes, namely sorbitol, myo-inositol, glycerophosphorylcholine (GPC), and betaine to balance the extracellular hyperosmolality. These organic osmolytes increase cell osmolality without perturbing the intracellular milieu in ways that would degrade the function of cellular macromolecules. The present study surveyed a number of cell lines for the ability to survive in media with high concentrations of NaCl and/or urea and for the accumulation of organic osmolytes. Of the renal cell lines tested, MDCK, GRB-MAL1, and A6 cells proliferated in hyperosmotic media, but medullary interstitial cells LLC-PK1 and LLC-PK3 did not proliferate, nor did nonrenal HTC-BH cells, MDCK, LLC-PK1, and LLC-PK3 cells contained higher concentrations of myo-inositol, GPC, and betaine when cultured in media containing high NaCl (with or without high urea) and much lower or undetectable levels of these osmolytes when grown in isosmotic media. Sorbitol, and to a lesser extent myo-inositol, were elevated in GRB-MAL1 cells in media hyperosmotic with NaCl but not in isosmotic media. There was less accumulation of organic osmolytes when only urea was added to increase osmolality. Thus the same osmolytes were accumulated by one or another cell line in vitro as were previously found in renal medullas. These cell lines provide models for studying osmolyte accumulation.

2002 ◽  
Vol 183 (1) ◽  
pp. 61-68 ◽  
Author(s):  
Gregory J. Finn ◽  
Emma Kenealy ◽  
Bernadette S. Creaven ◽  
Denise A. Egan

Biomarkers ◽  
1996 ◽  
Vol 1 (1) ◽  
pp. 35-43 ◽  
Author(s):  
Maria L. Anthony ◽  
Peter C. R. McDowell ◽  
Tim J. B. Gray ◽  
Melanie Blackmore ◽  
Jeremy K. Nicholson

2016 ◽  
Vol 85 (2) ◽  
pp. 69-74 ◽  
Author(s):  
Martina Vrbová ◽  
Eva Dastychová ◽  
Tomáš Roušar

2021 ◽  
Vol 38 (9) ◽  
Author(s):  
Richard C. Zieren ◽  
Liang Dong ◽  
David J. Clark ◽  
Morgan D. Kuczler ◽  
Kengo Horie ◽  
...  

AbstractRenal cell carcinoma (RCC) accounts for over 400,000 new cases and 175,000 deaths annually. Diagnostic RCC biomarkers may prevent overtreatment in patients with early disease. Extracellular vesicles (EVs) are a promising source of RCC biomarkers because EVs carry proteins and messenger RNA (mRNA) among other biomolecules. We aimed to identify biomarkers and assess biological functions of EV cargo from clear cell RCC (ccRCC), papillary RCC (pRCC), and benign kidney cell lines. EVs were enriched from conditioned cell media by size exclusion chromatography. The EV proteome was assessed using Tandem Mass Tag mass spectrometry (TMT-MS) and NanoString nCounter technology was used to profile 770 cancer-related mRNA present in EVs. The heterogeneity of protein and mRNA abundance and identification highlighted the heterogeneity of EV cargo, even between cell lines of a similar pathological group (e.g., ccRCC or pRCC). Overall, 1726 proteins were quantified across all EV samples, including 181 proteins that were detected in all samples. In the targeted profiling of mRNA by NanoString, 461 mRNAs were detected in EVs from at least one cell line, including 159 that were present in EVs from all cell lines. In addition to a shared EV cargo signature, pRCC, ccRCC, and/or benign renal cell lines also showed unique signatures. Using this multi-omics approach, we identified 34 protein candidate pRCC EV biomarkers and 20 protein and 8 mRNA candidate ccRCC EV biomarkers for clinical validation.


2018 ◽  
Vol 13 (7) ◽  
Author(s):  
Jennifer Leigh ◽  
Smriti Juriasingani ◽  
Masoud Akbari ◽  
Peng Shao ◽  
Manujendra N. Saha ◽  
...  

Introduction: Patients suffering from chronic kidney disease (CKD) experience a number of associated comorbidities, including anemia. Relative deficiency in renal erythropoietin (EPO) production is thought to be a primary cause of anemia. Interestingly, CKD patients display low levels of hydrogen sulfide (H2S), an endogenously derived renal oxygen sensor. Previous in vitro experiments have revealed that H2S-deficient renal cell lines produce less EPO than wild-type renal cell lines during hypoxia.Methods: We postulated that H2S might be a primary mediator of EPO synthesis during hypoxia, which was tested using an in vivo murine model of whole-body hypoxia and in clinical samples obtained from CKD patients.Results: Following a 72-hour period of hypoxia (11% O2), partial H2S knockout mice (lacking the H2S biosynthetic enzyme cystathionine γ-lyase [CSE]) displayed lower levels of hemoglobin, EPO and cystathionine-β-synthase (CBS) (another H2S biosynthetic enzyme) compared to wild-type mice, all of which was rescued by exogenous H2S supplementation. We also found that anemic CKD patients requiring exogenous EPO exhibited lower urinary thiosulfate levels compared to non-anemic CKD patients of similar CKD classification.Conclusions: Together, our results confirm an interplay between the actions of H2S during hypoxia and EPO production.


2020 ◽  
Author(s):  
In Youb Chang ◽  
Takbum Ohn ◽  
Daeun Moon ◽  
Young Hee Maeng ◽  
Bo Gun Jang ◽  
...  

Abstract Background Although renal cell carcinoma (RCC) is known to be susceptible to ferroptosis, we found primary RCC cells showed resistance to ferroptosis and aimed to investigate a feasible candidate for an appropriate cell line for the RCC model. Methods Glutathione peroxidase 4 (GPX4) immunostaining was adopted in the RCC tissue microarrays. Normal human proximal tubule cells (HK-2) and RCC cell lines were used for the MTT assay, Western blotting, sphere-forming assay, and orthotopic injection of athymic Balb/c-nude mice. Results GPX4 immunostaining showed low intensity compared to the normal kidney, which coincided with the ferroptosis-susceptibility of RCC. Primary RCC cell lines (Caki-2, SNU-333, SNU-349, and SNU-1272) showed resistance to 5-fluorouracil and a GPX4 inhibitor compared to the HK-2 cells and to metastatic RCC cells (Caki-1). The Caki-2 cells showed increased GPX4 and xCT, and the SNU-333 cells showed increased ferritin heavy chain (FTH1) compared to the other RCC cells. The Caki-2 cells showed increased aSMA, fibronectin, vimentin, and SNAIL, and the SNU-333 cells showed increased aSMA, E-cadherin, and EpCAM. The Caki-2 cells showed increased Sox-2 and CD105, and the SNU-333 cells showed increased c-Myc and Lgr5. The Caki-1 and SNU-333 cells formed spheres in vitro and orthotopic RCC masses in vivo. The injected SNU-333 tumor only showed high intensities of CD10 and PAX8, consistent with the diagnostic criteria for RCC. Conclusions The primary RCC cell lines used in this study were more resistant to ferroptosis and 5-fluorouracil, and the SNU-333 cells showed tumor-initiating capacities in vitro and in vivo. These results suggest that SNU-333 might be suitable as a orthotopic RCC model for future research.


1984 ◽  
Vol 105 (3) ◽  
pp. 429-432 ◽  
Author(s):  
Juan Bernal ◽  
Leif C. Andersson

Abstract. The 3,5,3'-triiodothyronine (T3) receptor has been studied in a series of continuously growing human leukaemic cell lines. High concentrations of receptor were found in the erythroblastoid cell line K-562. T3 was bound to the nuclei of these cells with an association constant of 3.4 × 109 m−1, and capacity 104 fmol/100 μg DNA, or 8700 molecules/nucleus. This capacity is comparable to that of rat liver or growth hormone producing cells (GH cells) in culture, and suggests that the K-562 cell line could be a useful model for the study of T3 action on erythroid differentiation.


2017 ◽  
Vol 63 (1) ◽  
pp. 141-145
Author(s):  
Yuliya Khochenkova ◽  
Eliso Solomko ◽  
Oksana Ryabaya ◽  
Yevgeniya Stepanova ◽  
Dmitriy Khochenkov

The discovery for effective combinations of anticancer drugs for treatment for breast cancer is the actual problem in the experimental chemotherapy. In this paper we conducted a study of antitumor effect of the combination of sunitinib and bortezomib against MDA-MB-231 and SKBR-3 breast cancer cell lines in vitro. We found that bortezomib in non-toxic concentrations can potentiate the antitumor activity of sunitinib. MDA-MB-231 cell line has showed great sensitivity to the combination of bortezomib and sunitinib in vitro. Bortezomib and sunitinib caused reduced expression of receptor tyrosine kinases VEGFR1, VEGFR2, PDGFRa, PDGFRß and c-Kit on HER2- and HER2+ breast cancer cell lines


2020 ◽  
Vol 21 (1) ◽  
pp. 42-60
Author(s):  
Farah Nawaz ◽  
Ozair Alam ◽  
Ahmad Perwez ◽  
Moshahid A. Rizvi ◽  
Mohd. Javed Naim ◽  
...  

Background: The Epidermal Growth Factor Receptor (known as EGFR) induces cell differentiation and proliferation upon activation through the binding of its ligands. Since EGFR is thought to be involved in the development of cancer, the identification of new target inhibitors is the most viable approach, which recently gained momentum as a potential anticancer therapy. Objective: To assess various pyrazole linked pyrazoline derivatives with carbothioamide for EGFR kinase inhibitory as well as anti-proliferative activity against human cancer cell lines viz. A549 (non-small cell lung tumor), MCF-7 (breast cancer cell line), SiHa (cancerous tissues of the cervix uteri), and HCT-116 (colon cancer cell line). Methods: In vitro EGFR kinase assay, in vitro MTT assay, Lactate dehydrogenase release, nuclear staining (DAPI), and flow cytometry cell analysis. Results: Compounds 6h and 6j inhibited EGFR kinase at concentrations of 1.66μM and 1.9μM, respectively. Furthermore, compounds 6h and 6j showed the most potent anti-proliferative results against the A549 KRAS mutation cell line (IC50 = 9.3 & 10.2μM). Through DAPI staining and phase contrast microscopy, it was established that compounds 6h and 6j also induced apoptotic activity in A549 cells. This activity was further confirmed by FACS using Annexin-V-FITC and Propidium Iodide (PI) labeling. Molecular docking studies performed on 6h and 6j suggested that the compounds can bind to the hinge region of ATP binding site of EGFR tyrosine kinase in a similar pose as that of the standard drug gefitinib. Conclusion: The potential anticancer activity of compounds 6h and 6j was confirmed and need further exploration in cancer cell lines of different tissue origin and signaling pathways, as well as in animal models of cancer development.


Sign in / Sign up

Export Citation Format

Share Document