Recruitment of purinergically stimulated Cl- channels from granule membrane to plasma membrane
HT29-Cl.16E and HT29-Cl.19A are two different subcloned cell lines derived from the human adenocarcinoma cell line HT-29. They are similar in their ability to grow and differentiate to polarized epithelial cells but differ in that HT29-Cl.16E is goblet cell-like with many mucin granules, whereas HT29-Cl.19A lacks mucin granules. Extracellular ATP stimulates Cl- secretion in both cell lines through luminal purinergic P20 receptors and, in HT29-Cl.16E, also mucin secretion release. To evaluate whether fusion of mucin granules is associated with an increase in Cl- conductance of the plasma membrane, the effects of two fusion inhibitors on luminal Cl- conductance were measured. Blockage of actin depolymerization with phalloidin (1 microM) inhibited purinergically stimulated but not adenosine 3',5'-cyclic monophosphate (cAMP)-stimulated luminal Cl- efflux by 50% in HT29-Cl.16E. The same treatment was without effect in HT29-Cl.19A. The fungal metabolite wortmannin, which is an inhibitor of regulated exocytosis in leukocytes, at 100 nM inhibited Cl- secretion by 70% in HT29-Cl.16E. This inhibition was not a direct effect on purinergically stimulated Cl- channels because wortmannin concentrations of up to 1 microM did not affect the secretory response in HT29-Cl.19A. The wortmannin inhibition of Cl- secretion is associated with an inhibition of granule fusion as judged by electron microscopy. The differential inhibition of Cl- secretion in the related HT-29 clones that differ with respect to the presence of mucin granules indicates that 1) the granule fusion inhibitors, phalloidin and wortmannin, have no direct inhibitory effects on purinergically and cAMP-activated Cl- channels, 2) a major portion of purinergically but not cAMP-activated Cl- channels is associated with granule fusion in HT29-Cl.16E, and 3) the signaling pathways for Cl- secretion and granule fusion are not completely identical.