Angiotensin II type 1 receptor modulation of neuronal K+ and Ca2+ currents: intracellular mechanisms

1996 ◽  
Vol 271 (1) ◽  
pp. C154-C163 ◽  
Author(s):  
C. Sumners ◽  
M. Zhu ◽  
C. H. Gelband ◽  
P. Posner

Angiotensin II (ANG II) elicits an ANG II type 1 (AT1) receptor-mediated decrease in voltage-dependent K+ current (Ik) and an incrase in voltage-dependent Ca2+ current (ICa) in neurons cocultured from newborn rat hypothalamus and brain stem. Modulation of these currents by ANG II involves intracellular messengers that result from an AT1 receptor-mediated stimulation of phosphoinositide hydrolysis. For example, the effects of ANG II on IK and ICa were abolished by phospholipase C antagonists. The reduction in IK produced by ANG II was attenuated by either protein kinase C (PKC) antagonists or by chelation of intracellular Ca2+. By contrast, PKC antagonism abolished the stimulatory effect of ANG II on ICa. Superfusion of the PKC activator phorbol 12-myristate 13-acetate produced effects on IK and ICa similar to those observed after ANG II. Furthermore, intracellular application of inositol 1,4,5-trisphosphate (IP3) elicited a significant reduction in IK. This suggests that the AT1 receptor-mediated changes in neuronal K+ and Ca2+ currents involve PKC (both IK and ICa) and IP3 and/or intracellular Ca2+ (IK).

1993 ◽  
Vol 265 (4) ◽  
pp. C1046-C1049 ◽  
Author(s):  
M. K. Raizada ◽  
B. Rydzewski ◽  
D. Lu ◽  
C. Sumners

Angiotensin II (ANG II) stimulates plasminogen activator inhibitor 1 (PAI-1) gene expression in astroglial cells prepared from rat brains. In this study, we investigated whether c-fos gene expression may be involved in this cellular action of ANG II. Incubation of astroglial cultures with ANG II caused a time- and dose-dependent transient stimulation of the steady-state levels of c-fos mRNA, with a maximal stimulation of 50-fold observed with 100 nM ANG II within 30-45 min. This stimulation was completely abolished by the presence of the type 1 ANG II (AT1) receptor antagonist losartan but not by the type 2 ANG II receptor blocker PD-123177. Depolarization of brain cell cultures with 50 mM K+ also caused a 100-fold increase in c-fos mRNA levels, an effect partially blocked by losartan. These observations show that AT1 receptor activation stimulates expression of the c-fos gene, which may act as a third messenger in the regulation of cellular actions of ANG II, including PAI-1 gene expression in astroglial cells.


1998 ◽  
Vol 142 (1) ◽  
pp. 217-227 ◽  
Author(s):  
Di Lu ◽  
Hong Yang ◽  
Robert H. Lenox ◽  
Mohan K. Raizada

Angiotensin II (Ang II) exerts chronic stimulatory actions on tyrosine hydroxylase (TH), dopamine β-hydroxylase (DβH), and the norepinephrine transporter (NET), in part, by influencing the transcription of their genes. These neuromodulatory actions of Ang II involve Ras-Raf-MAP kinase signal transduction pathways (Lu, D., H. Yang, and M.K. Raizada. 1997. J. Cell Biol. 135:1609–1617). In this study, we present evidence to demonstrate participation of another signaling pathway in these neuronal actions of Ang II. It involves activation of protein kinase C (PKC)β subtype and phosphorylation and redistribution of myristoylated alanine-rich C kinase substrate (MARCKS) in neurites. Ang II caused a dramatic redistribution of MARCKS from neuronal varicosities to neurites. This was accompanied by a time-dependent stimulation of its phosphorylation, that was mediated by the angiotensin type 1 receptor subtype (AT1). Incubation of neurons with PKCβ subtype specific antisense oligonucleotide (AON) significantly attenuated both redistribution and phosphorylation of MARCKS. Furthermore, depletion of MARCKS by MARCKS-AON treatment of neurons resulted in a significant decrease in Ang II–stimulated accumulation of TH and DβH immunoreactivities and [3H]NE uptake activity in synaptosomes. In contrast, mRNA levels of TH, DβH, and NET were not influenced by MARKS-AON treatment. MARCKS pep148–165, which contains PKC phosphorylation sites, inhibited Ang II stimulation of MARCKS phosphorylation and reduced the amount of TH, DβH, and [3H]NE uptake in neuronal synaptosomes. These observations demonstrate that phosphorylation of MARCKS by PKCβ and its redistribution from varicosities to neurites is important in Ang II–induced synaptic accumulation of TH, DβH, and NE. They suggest that a coordinated stimulation of transcription of TH, DβH, and NET, mediated by Ras-Raf-MAP kinase followed by their transport mediated by PKCβ-MARCKS pathway are key in persistent stimulation of Ang II's neuromodulatory actions.


Hypertension ◽  
2000 ◽  
Vol 36 (suppl_1) ◽  
pp. 688-688
Author(s):  
Toshihiro Ichiki ◽  
Kotaro Takeda ◽  
Akira Takeshita

58 Recent studies suggest a crucial role of reactive oxygen species (ROS) for the signaling of Angiotensin II (Ang II) through type 1 Ang II receptor (AT1-R). However, the role of ROS in the regulation of AT1-R expression has not been explored. In this study, we examined the effect of an antioxidant on the homologous downregulation of AT1-R by Ang II. Ang II (10 -6 mol/L) decreased AT1-R mRNA with a peak suppression at 6 hours of stimulation in rat aortic vascular smooth muscle cells (VSMC). Ang II dose-dependently (10 -8 -10 -6 ) suppressed AT1-R mRNA at 6 hours of stimulation. Preincubation of VSMC with N-acetylcysteine (NAC), a potent antioxidant, almost completely inhibited the Ang II-induced downregulation of AT1-R mRNA. The effect of NAC was due to stabilization of the AT1-R mRNA that was destabilized by Ang II. Ang II did not affect the promoter activity of AT1-R gene. Diphenylene iodonium (DPI), an inhibitor of NADH/NADPH oxidase failed to inhibit the Ang II-induced AT1-R mRNA downregulation. The Ang II-induced AT1-R mRNA downregulation was also blocked by PD98059, an extracellular signal-regulated protein kinase (ERK) kinase inhibitor. Ang II-induced ERK activation was inhibited by NAC as well as PD98059 whereas DPI did not inhibit it. To confirm the role of ROS in the regulation of AT1-R mRNA expression, VSMC were stimulated with H 2 O 2 . H 2 O 2 suppressed the AT1-R mRNA expression and activated ERK. These results suggest that production of ROS and activation of ERK are critical for downregulation of AT1-R mRNA. The differential effect of NAC and DPI on the downregulation of AT1-R mRNA may suggest the presence of other sources than NADH/NADPH oxidase pathway for ROS in Ang II signaling. Generation of ROS through stimulation of AT1-R not only mediates signaling of Ang II but may play a crucial role in the adaptation process of AT1-R to the sustained stimulation of Ang II.


Author(s):  
Ting Xu ◽  
Xiaorong Fan ◽  
Meng Zhao ◽  
Meng Wu ◽  
Huan Li ◽  
...  

As the most common clinical stress during mid and late pregnancy, antenatal hypoxia has profound adverse effects on individual’s vascular health later in life, but the underlying mechanisms are still not understood. The purpose of this study was to reveal the mechanisms of the acquired vascular dysfunction in offspring imposed by antenatal hypoxia. Pregnant rats were housed in a normoxic or hypoxic (10.5% oxygen) chamber from gestation day 10 to 21. Male offspring were euthanized at gestational day 21 (fetus) or postnatal 16 weeks old (adult offspring). Mesenteric arteries were collected for examining Ang II (angiotensin II)–mediated vascular contractility, gene expression, and promoter methylation. Antenatal hypoxia increased vascular sensitivity to Ang II, which was resulted by an upregulated AT1R (angiotensin II type 1 receptor). The increased AT1R was correlated with a hypomethylation-mediated activated transcription of Agtr1a (alpha subtype of AT1R). In addition, we presented evidences that there was an AT1R-Egr1 (early growth response gene 1)-PKCε (ε isoform of protein kinase C) axis in vasculature; AT1R could modulate PKCε expression via upregulating Egr1; Egr1 mediated transcription activation of PKCε via Egr1 binding sites in PKCε gene promoter. Overall, antenatal hypoxia activated AT1R-Egr1-PKCε axis in vasculature, eventually predisposed offspring to vascular hypercontractility. This is the first description that antenatal hypoxia resulted in vascular adverse outcomes in postnatal offspring, was strongly associated with reprogrammed gene expression via a DNA methylation-mediated epigenetic mechanism, advancing understanding toward the influence of adverse antenatal factors in early life on long-term vascular health.


2006 ◽  
Vol 397 (2) ◽  
pp. 337-344 ◽  
Author(s):  
Ben-Bo Gao ◽  
Hans Hansen ◽  
Hong-Chi Chen ◽  
Edward P. Feener

PI3K (phosphoinositide 3-kinase) activity is involved in Ang (angiotensin) II-stimulated VSMC (vascular smooth muscle cell) growth and hypertrophy. In the present study, we demonstrate that the inhibition of PI3K in VSMCs by expression of a dominant-negative p85α mutant lacking the p110-binding domain (Δp85), or by treatment of cells with LY294002, inhibited Ang II-stimulated PAI-1 (plasminogen activator inhibitor-1) mRNA expression. Using a GST (glutathione S-transferase) fusion protein containing the p85 N-terminal SH2 (Src homology 2) domain as ‘bait’ followed by MS/MS (tandem MS), we identified a 70 kDa fragment of the p70 PDGFR-β (platelet-derived growth factor receptor-β) as a signalling adapter that is phosphorylated and recruits the p85 subunit of PI3K after Ang II stimulation of AT1 (Ang II subtype 1) receptors on VSMCs. This fragment of the PDGFR-β, which has a truncation of its extracellular domain, accounted for approx. 15% of the total PDGFR-β detected in VSMCs with an antibody against its cytoplasmic domain. Stimulation of VSMCs with Ang II increased tyrosine-phosphorylation of p70 PDGFR-β at Tyr751 and Tyr1021 and increased its binding to p85. PDGF also induced phosphorylation of p70 PDGFR-β, a response inhibited by the PDGF tyrosine kinase selective inhibitor, AG1296. By contrast, Ang II-induced phosphorylation of the 70 kDa receptor was not affected by AG1296. Ang II-stimulated phosphorylation of the p70 PDGFR-β was blocked by the AT1 receptor antagonist, candesartan (CV 11974) and was partially inhibited by PP2 {4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine}, an Src family kinase inhibitor. Our result suggests that the p70 PDGFR-β functions as an adapter that recruits PI3K to the membrane upon AT1 receptor stimulation.


1990 ◽  
Vol 258 (4) ◽  
pp. C610-C617 ◽  
Author(s):  
C. J. Kalberg ◽  
C. Sumners

The radioligand binding of 125I-angiotensin II (ANG II) and calcium phospholipid-dependent protein kinase C (PKC) activity were measured to study the specificity and mechanisms of PKC involvement in the regulation of ANG II-specific binding site expression in neuronal cultures prepared from the brains of 1-day-old rats. Previously, PKC-activating phorbol esters were shown to increase the specific binding of 125I-ANG II in neuronal cultures. However, phorbol esters have many biological effects, which may nonspecifically act to increase 125I-ANG II-specific binding. In the present study, mezerein and teleocidin A, two activators of PKC that are chemically unrelated to phorbol esters, increased the specific binding of 125I-ANG II in a dose- and time-dependent manner with 50% effective dose (ED50) values of 32 and 79 nM, respectively. The PKC antagonist H-7 dose dependently inhibited phorbol 12-myristate 13-acetate (TPA)-stimulated increases in 125I-ANG II binding, whereas downregulation of PKC activity by chronic phorbol ester incubations of 24 and 48 h prevented TPA-stimulated increases in 125I-ANG II-specific binding. TPA (0.8 microM), mezerein (0.76 microM), and teleocidin A (0.5 microM) all caused a rapid translocation of PKC activity from the cytosol to the particulate fraction by 15 min. Temporally, the maximal stimulation of PKC translocation by mezerein, teleocidin A, and TPA preceded their ability to stimulate maximal 125I-ANG II-specific binding. Taken together, these results suggest that PKC is directly involved in the stimulation of ANG II-specific binding site expression and that translocation of PKC is a prerequisite for the increased expression of ANG II binding sites.


2001 ◽  
Vol 2 (1_suppl) ◽  
pp. S32-S36 ◽  
Author(s):  
Georges Vauquelin ◽  
Frederik LP Fierens ◽  
Zsuzsanna Gáborik ◽  
Tam Le Minh ◽  
Jean-Paul De Backer ◽  
...  

To explain the insurmountable/long-lasting binding of biphenyltetrazole-containing AT1-receptor antagonists such as candesartan, to the human angiotensin II type 1-receptor, a model is proposed in which the basic amino acids Lys199 and Arg 167 of the receptor interact respectively with the carboxylate and the tetrazole group of the antagonists. To validate this model, we have investigated the impact of substitution of Lys199 by Ala or Gln and of Arg167 by Ala on the binding properties of [3H]candesartan and on competition binding by candesartan, EXP3174, irbesartan, losartan, angiotensin II (Ang II) and [Sar1-Ile8]angiotensin. Our results indicate that both amino acids play an important role in the AT1-receptor ligand binding. Whereas the negative charge of Lys 199 is involved in an ionic bond with the end-standing carboxylate group of the peptide ligands, its polarity also contributes to the non-peptide antagonist binding. Substitution of Arg167 by Ala completely abolished [3H]Ang II, as well as [3H] candesartan, binding. Whereas these results are in line with the proposed model, it cannot be excluded that both amino acid residues are important for the structural integrity of the AT1-receptor with respect to its ligand binding properties.


2017 ◽  
Vol 49 (10) ◽  
pp. 531-540 ◽  
Author(s):  
Jie Zhang ◽  
Helena Y. Qu ◽  
Jiangping Song ◽  
Jin Wei ◽  
Shan Jiang ◽  
...  

The prevalence of hypertension is about twofold higher in diabetic than in nondiabetic subjects. Hypertension aggravates the progression of diabetic complications, especially diabetic nephropathy. However, the mechanisms for the development of hypertension in diabetes have not been elucidated. We hypothesized that enhanced constrictive responsiveness of renal afferent arterioles (Af-Art) to angiotensin II (ANG II) mediated by ANG II type 1 (AT1) receptors contributes to the development of hypertension in diabetes. In response to an acute bolus intravenous injection of ANG II, alloxan-induced diabetic mice exhibited a higher mean arterial pressure (MAP) (119.1 ± 3.8 vs. 106.2 ± 3.5 mmHg) and a lower renal blood flow (0.25 ± 0.07 vs. 0.52 ± 0.14 ml/min) compared with nondiabetic mice. In response to chronic ANG II infusion, the MAP measured with telemetry increased by 55.8 ± 6.5 mmHg in diabetic mice, but only by 32.3 ± 3.8 mmHg in nondiabetic mice. The mRNA level of AT1 receptor increased by ~10-fold in isolated Af-Art of diabetic mice compared with nondiabetic mice, whereas ANG II type 2 (AT2) receptor expression did not change. The ANG II dose-response curve of the Af-Art was significantly enhanced in diabetic mice. Moreover, the AT1 receptor antagonist, losartan, blocked the ANG II-induced vasoconstriction in both diabetic mice and nondiabetic mice. In conclusion, we found enhanced expression of the AT1 receptor and exaggerated response to ANG II of the Af-Art in diabetes, which may contribute to the increased prevalence of hypertension in diabetes.


Endocrinology ◽  
2010 ◽  
Vol 151 (4) ◽  
pp. 1695-1703 ◽  
Author(s):  
Mária Szekeres ◽  
György L. Nádasy ◽  
Gábor Turu ◽  
Katinka Süpeki ◽  
László Szidonya ◽  
...  

Angiotensin II (Ang II) is a major regulator of steroidogenesis in adrenocortical cells, and is also an effective inducer of cytokine and growth factor synthesis in several cell types. In microarray analysis of H295R human adrenocortical cells, the mRNA of brain-derived neurotrophic factor (BDNF), a neurotrophin widely expressed in the nervous system, was one of the most up-regulated genes by Ang II. The aim of the present study was the analysis of the Ang II-induced BDNF expression and BDNF-induced effects in adrenocortical cells. Real-time PCR studies have shown that BDNF is expressed in H295R and rat adrenal glomerulosa cells. In H295R cells, the kinetics of Ang II-induced BDNF expression was faster than that of aldosterone synthase (CYP11B2). Inhibition of calmodulin kinase by KN93 did not significantly affect the Ang II-induced stimulation of BDNF expression, suggesting that it occurs by a different mechanism from the CYP11B2-response. Ang II also caused candesartan-sensitive, type-1 Ang II receptor-mediated stimulation of BDNF gene expression in primary rat glomerulosa cells. In rat adrenal cortex, BDNF protein was localized to the subcapsular region. Ang II increased BDNF protein levels both in human and rat cells, and BDNF secretion of H295R cells. Ang II also increased type-1 Ang II receptor-mediated BDNF expression in vivo in furosemide-treated rats. In rat glomerulosa cells, BDNF induced tropomyosin-related kinase B receptor-mediated stimulation of EGR1 and TrkB expression. These data demonstrate that Ang II stimulates BDNF expression in human and rat adrenocortical cells, and BDNF may have a local regulatory function in adrenal glomerulosa cells.


1995 ◽  
Vol 269 (5) ◽  
pp. F730-F738 ◽  
Author(s):  
I. D. Weiner ◽  
A. R. New ◽  
A. E. Milton ◽  
C. C. Tisher

Angiotensin II (ANG II) regulates whole kidney ion transport, yet its effects in the collecting duct are unknown. The purpose of these studies was to determine whether ANG II regulates luminal alkalinization and acidification in the rabbit cortical collecting duct (CCD). The rate of luminal alkalinization or acidification was measured as the rate of change of luminal fluid pH under stop-flow conditions using in vitro microperfused CCD segments. Outer CCD alkalinized the luminal fluid, consistent with net HCO3- secretion. Addition of ANG II, 10(-7) M, to the peritubular solution for 30 min significantly stimulated luminal alkalinization. The stimulatory effect of ANG II was not due to time-dependent effects and was blocked by peritubular addition of the ANG II type 1 (AT1) receptor antagonist, losartan, at 10(-6) M. Losartan, 10(-6) M, when added to the peritubular solution, did not alter the rate of luminal alkalinization independent of ANG II. In contrast, peritubular ANG II, 10(-7) M, did not alter inner CCD luminal acidification. Addition of ANG II to the peritubular solution at the lower concentration of 10(-10) M did not alter the rates of luminal alkalinization and acidification in the outer and inner CCD, respectively. Peritubular ANG II, 10(-7) M, but not vehicle, stimulated B cell apical HCO3- secretion occurring in response to peritubular Cl- removal. These studies demonstrate that ANG II acts through a basolateral AT1 receptor to stimulate outer CCD luminal alkalinization via, at least in part, B cell stimulation.


Sign in / Sign up

Export Citation Format

Share Document