intracellular messengers
Recently Published Documents


TOTAL DOCUMENTS

119
(FIVE YEARS 7)

H-INDEX

26
(FIVE YEARS 1)

Author(s):  
N. M. Litvinko

A review of the main experimental results in the field of studying the interaction in vivo and in vitro of enzyme systems responsible for the metabolism of arachidonic acid is presented. Metabolic events from its release from phospholipids (phospholipase A2) to its transformation (cytochromes P450) into the most important intracellular messengers of external signal transmission to the internal “language of the cell” are discussed.


2021 ◽  
Vol 118 (37) ◽  
pp. e2108094118
Author(s):  
Zhihui Fong ◽  
Caoimhín S. Griffin ◽  
Roddy J. Large ◽  
Mark A. Hollywood ◽  
Keith D. Thornbury ◽  
...  

P2X1 receptors are adenosine triphosphate (ATP)-gated cation channels that are functionally important for male fertility, bladder contraction, and platelet aggregation. The activity of P2X1 receptors is modulated by lipids and intracellular messengers such as cAMP, which can stimulate protein kinase A (PKA). Exchange protein activated by cAMP (EPAC) is another cAMP effector; however, its effect on P2X1 receptors has not yet been determined. Here, we demonstrate that P2X1 currents, recorded from human embryonic kidney (HEK) cells transiently transfected with P2X1 cDNA, were inhibited by the highly selective EPAC activator 007-AM. In contrast, EPAC activation enhanced P2X2 current amplitude. The PKA activator 6-MB-cAMP did not affect P2X1 currents, but inhibited P2X2 currents. The inhibitory effects of EPAC on P2X1 were prevented by triple mutation of residues 21 to 23 on the amino terminus of P2X1 subunits to the equivalent amino acids on P2X2 receptors. Double mutation of residues 21 and 22 and single mutation of residue 23 also protected P2X1 receptors from inhibition by EPAC activation. Finally, the inhibitory effects of EPAC on P2X1 were also prevented by NSC23766, an inhibitor of Rac1, a member of the Rho family of small GTPases. These data suggest that EPAC is an important regulator of P2X1 and P2X2 receptors.


Author(s):  
Silvia Groiss ◽  
Roland Lammegger ◽  
Dagmar Brislinger

Innate immune cells react to electromagnetic fields (EMF) by generating reactive oxygen species (ROS), crucial intracellular messengers. Discrepancies in applied parameters of EMF studies, e.g., flux densities, complicate direct comparison of downstream anti-oxidative responses and immune regulatory signaling. We therefore compared the impact of different EMF flux densities in human leukemic THP1 cells and peripheral blood mononuclear cells (PBMC) of healthy donors to additionally consider a potential disparate receptivity based on medical origin. ROS levels increased in THP1 cells stimulated with lipopolysaccharide (LPS) after one hour of EMF exposure. Moreover, weak EMF mitigated the depletion of the reducing agent NAD(P)H in THP1. Neither of these effects occurred in PBMC. Landscaping transcriptional responses to varied EMF revealed elevation of the anti-oxidative enzymes PRDX6 (2-fold) and DHCR24 (6-fold) in THP1, implying involvement in lipid metabolism. Furthermore, our study confirmed anti-inflammatory effects of EMF by 6-fold increased expression of IL10. Strikingly, THP1 responded to weak EMF, while PBMC were primarily affected by strong EMF, yet with severe cellular stress and enhanced rates of apoptosis, indicated by HSP70 and caspase 3 (CASP3). Taken together, our results emphasize an altered susceptibility of immune cells of different origin and associate EMF-related effects with anti-inflammatory signaling and lipid metabolism.


Author(s):  
Reza Nejat ◽  
Ahmad Shahir Sadr ◽  
David Najafi

Introduction: Neuroinflammation is the inflammatory reaction in the central nervous system (CNS) provoked by diverse insults. This phenomenon results in a cascade of release of inflammatory mediators and intracellular messengers such as reactive oxygen species. The elicited responses are the cause of many neurological and neurodegenerative disorders. Erythropoietin (EPO) has been considered effective in attenuating this inflammatory process in the CNS, yet its administration in COVID-19 needs meticulously designed studies. Discussion: Neuroinflammation in COVID-19 due to probable contribution of renin-angiotensin system dysregulation resulting in surplus of Ang II and owing to the synergistic interaction between this octapeptide and EPO needs special consideration. Both of these compounds increase intracellular Ca2+ which may induce release of cytokine and inflammatory mediators leading to aggravation of neuroinflammation. In addition, Ang II elevates HIF even in normoxia which by itself increases EPO. It is implicated that EPO and HIF may likely increase in patients with COVID-19 which makes administration of EPO to these patients hazardous. Furthermore, papain-like protease of SARS-CoV2 as a deubiquitinase may also increase HIF. Conclusion: It is hypothesized that administration of EPO to patients with COVID-19-induced neuroinflammation may not be safe and in case EPO is needed for any reason in this disease adding of losartan may block AT1R-mediated post-receptor harmful effects of Ang II in synergism with EPO. Inhibition of papain-like protease might additionally decrease HIF in this disease. More in vitro, in vivo and clinical studies are needed to validate these hypotheses.


2019 ◽  
Vol 20 (13) ◽  
pp. 3292 ◽  
Author(s):  
Arathi Nair ◽  
Prashant Chauhan ◽  
Bhaskar Saha ◽  
Katharina F. Kubatzky

During the last 100 years, cell signaling has evolved into a common mechanism for most physiological processes across systems. Although the majority of cell signaling principles were initially derived from hormonal studies, its exponential growth has been supported by interdisciplinary inputs, e.g., from physics, chemistry, mathematics, statistics, and computational fields. As a result, cell signaling has grown out of scope for any general review. Here, we review how the messages are transferred from the first messenger (the ligand) to the receptor, and then decoded with the help of cascades of second messengers (kinases, phosphatases, GTPases, ions, and small molecules such as cAMP, cGMP, diacylglycerol, etc.). The message is thus relayed from the membrane to the nucleus where gene expression ns, subsequent translations, and protein targeting to the cell membrane and other organelles are triggered. Although there are limited numbers of intracellular messengers, the specificity of the response profiles to the ligands is generated by the involvement of a combination of selected intracellular signaling intermediates. Other crucial parameters in cell signaling are its directionality and distribution of signaling strengths in different pathways that may crosstalk to adjust the amplitude and quality of the final effector output. Finally, we have reflected upon its possible developments during the coming years.


2019 ◽  
Vol 21 (1) ◽  
pp. 21-38
Author(s):  
V. A. Mikhailova ◽  
D. O. Bazhenov ◽  
K. L. Belyakova ◽  
S. A. Selkov ◽  
D. I. Sokolov

All lymphoid cells are referred to as an innate or adaptive immunity unit in terms of the mechanisms of performing immune reactions. The functional activity of natural killer (NK) cells is not associated with pre-activation processes resulting from contact with antigen, rearrangement of antigen-recognition receptor genes, and clonal proliferation. In this regard, NK cells are traditionally referred to as cells of innate immunity. Previously, it was believed that NK cells represent the only population of innate immunity lymphoid cells, but, more recently, there has been increasing evidence in the literature concerning existence of different populations of these cells, thus serving a basis for isolating a common cluster called Innate Lymphoid Cells (ILC). According to the ILC classification, NK cells are classified as the first group of innate lymphoid cells according to their overall functional characteristics, as well as contribution of the T-bet transcription factor to their differentiation. Complexity, multistage and partially nonlinear character of NK cell differentiation are associated with influence of the cellular microenvironment, consistent expression of transcription factors and activation of various intracellular signaling pathways in NK cells. The review considers positioning of NK cells in the ILC classification, the main transcription factors involved in NK cell differentiation. The authors are seeking for generalization of the major routes of intracellular signal transmission in NK cells depending on their activation by cytokines located in the cellular microenvironment and affecting NK cells. The decidual NK cells during pregnancy represent a special object of NK cell differentiation. Stromal cells, trophoblast cells and macrophages are present in the decidua, in addition to NK cells. The review concerns a special case of microenvironmental effects upon expression of transcription factors and activation of NK intracellular messengers, while considering trophoblast cells an example of such influences. The recently discovered variety of NK cells, induced by the microenvironment in the course of their differentiation, requires further study.


2018 ◽  
Vol 30 (12) ◽  
pp. 1666
Author(s):  
Bredford Kerr ◽  
Mariana Ríos ◽  
Karla Droguett ◽  
Manuel Villalón

Ciliary beat frequency (CBF) regulates the oviductal transport of oocytes and embryos, which are important components of the reproductive process. Local release of ATP transiently increases CBF by increasing [Ca2+]i. Ovarian hormones also regulate ciliary activity and oviductal transport. Progesterone (P4) induces nitric oxide (NO) production and high P4 concentrations induce ciliary dysfunction. However, the mechanism by which P4 affects CBF has not been elucidated. To evaluate the role of P4 in NO production and its effect on ATP-induced increases in CBF, we measured CBF, NO concentrations and [Ca2+]i in cultures of oviductal ciliated cells treated with P4 or NO signalling-related molecules. ATP induced a [Ca2+]i peak, followed by an increase in NO concentrations that were temporally correlated with the decreased phase of the transiently increased CBF. Furthermore, P4 increased the expression of nitric oxide synthases (iNOS and nNOS) and reduced the ATP-induced increase in CBF via a mechanism that involves the NO signalling pathway. These results have improved our knowledge about intracellular messengers controlling CBF and showed that NO attenuates oviduct cell functions. Furthermore, we showed that P4 regulates neurotransmitter (ATP) actions on CBF via the NO pathway, which could explain pathologies where oviductal transport is altered and fertility decreased.


Sign in / Sign up

Export Citation Format

Share Document