scholarly journals Enhanced hemodynamic responses to angiotensin II in diabetes are associated with increased expression and activity of AT1 receptors in the afferent arteriole

2017 ◽  
Vol 49 (10) ◽  
pp. 531-540 ◽  
Author(s):  
Jie Zhang ◽  
Helena Y. Qu ◽  
Jiangping Song ◽  
Jin Wei ◽  
Shan Jiang ◽  
...  

The prevalence of hypertension is about twofold higher in diabetic than in nondiabetic subjects. Hypertension aggravates the progression of diabetic complications, especially diabetic nephropathy. However, the mechanisms for the development of hypertension in diabetes have not been elucidated. We hypothesized that enhanced constrictive responsiveness of renal afferent arterioles (Af-Art) to angiotensin II (ANG II) mediated by ANG II type 1 (AT1) receptors contributes to the development of hypertension in diabetes. In response to an acute bolus intravenous injection of ANG II, alloxan-induced diabetic mice exhibited a higher mean arterial pressure (MAP) (119.1 ± 3.8 vs. 106.2 ± 3.5 mmHg) and a lower renal blood flow (0.25 ± 0.07 vs. 0.52 ± 0.14 ml/min) compared with nondiabetic mice. In response to chronic ANG II infusion, the MAP measured with telemetry increased by 55.8 ± 6.5 mmHg in diabetic mice, but only by 32.3 ± 3.8 mmHg in nondiabetic mice. The mRNA level of AT1 receptor increased by ~10-fold in isolated Af-Art of diabetic mice compared with nondiabetic mice, whereas ANG II type 2 (AT2) receptor expression did not change. The ANG II dose-response curve of the Af-Art was significantly enhanced in diabetic mice. Moreover, the AT1 receptor antagonist, losartan, blocked the ANG II-induced vasoconstriction in both diabetic mice and nondiabetic mice. In conclusion, we found enhanced expression of the AT1 receptor and exaggerated response to ANG II of the Af-Art in diabetes, which may contribute to the increased prevalence of hypertension in diabetes.

2011 ◽  
Vol 301 (1) ◽  
pp. E132-E144 ◽  
Author(s):  
Junling Yang ◽  
Yi Tan ◽  
Fenglian Zhao ◽  
Zhongsen Ma ◽  
Yuehui Wang ◽  
...  

Diabetic patients have a high risk of pulmonary disorders that are usually associated with restrictive impairment of lung function, suggesting a fibrotic process (van den Borst B, Gosker HR, Zeegers MP, Schols AM. Chest 138: 393–406, 2010; Ehrlich SF, Quesenberry CP Jr, Van Den Eeden SK, Shan J, Ferrara A. Diabetes Care 33: 55–60, 2010). The present study was undertaken to define whether and how diabetes causes lung fibrosis. Lung samples from streptozotocin-induced type 1 diabetic mice, spontaneously developed type 1 diabetic OVE26 mice, and their age-matched controls were investigated with histopathological and biochemical analysis. Signaling mechanism was investigated with cultured normal human lung fibroblasts in vitro. In both diabetes models, histological examination with Sirius red and hemotoxylin and eosin stains showed fibrosis along with massive inflammatory cell infiltration. The fibrotic and inflammatory processes were confirmed by real-time PCR and Western blotting assays for the increased fibronectin, CTGF, PAI-1, and TNFα mRNA and protein expressions. Diabetes also significantly increased NADPH oxidase (NOX) expression and protein nitration along with upregulation of angiotensin II (Ang II) and its receptor expression. In cell culture, exposure of lung fibroblasts to Ang II increased CTGF expression in a dose- and time-dependent manner, which could be abolished by inhibition of superoxide, NO, and peroxynitrite accumulation. Furthermore, chronic infusion of Ang II to normal mice at a subpressor dose induced diabetes-like lung fibrosis, and Ang II receptor AT1 blocker (losartan) abolished the lung fibrotic and inflammatory responses in diabetic mice. These results suggest that Ang II plays a critical role in diabetic lung fibrosis, which is most likely caused by NOX activation-mediated nitrosative damage.


1995 ◽  
Vol 268 (6) ◽  
pp. R1401-R1405 ◽  
Author(s):  
M. el Ghissassi ◽  
S. N. Thornton ◽  
S. Nicolaidis

The angiotensin receptor specificity, with respect to fluid intake, of the organum cavum prelamina terminalis (OCPLT), a recently discovered discrete forebrain structure with high sensitivity to angiotensin II (ANG II), was investigated. ANG II (10 ng) microinjected into the OCPLT significantly increased water consumption but did not induce intake of a hypertonic (3%) NaCl solution. Losartan, an ANG II type 1 (AT1) receptor-specific antagonist, produced dose-related (1-100 ng) inhibition of ANG II-induced drinking. The ANG II type 2 receptor-specific antagonist CGP-42112A was ineffective. Intake of the 3% NaCl solution in response to microinjection of either of the antagonists into the OCPLT was never observed. These findings suggest that water intake produced by microinjection of ANG II into the OCPLT is mediated by AT1 receptors uniquely and that, in contrast to other regions of the brain, these receptors do not induce salt intake when stimulated by ANG II.


1997 ◽  
Vol 273 (3) ◽  
pp. C1040-C1048 ◽  
Author(s):  
M. Zhu ◽  
R. R. Neubig ◽  
S. M. Wade ◽  
P. Posner ◽  
C. H. Gelband ◽  
...  

Angiotensin II (ANG II) inhibits delayed rectifier K+ current (IK) and stimulates total Ca2+ current (ICa) in neurons cocultured from newborn rat hypothalamus and brain stem, effects mediated via ANG II type 1 (AT1) receptors. Here, we identify potential G protein activator regions of the AT1 receptor responsible for initiating the intracellular changes that lead to alterations in these currents. Intracellular application into cultured neurons of a peptide corresponding to the third cytoplasmic loop of the AT1 receptor (AT1a/i3) mimicked the actions of ANG II on IK and ICa, whereas application of a peptide corresponding to the second cytoplasmic loop (AT1a/i2) did not alter these currents. This modulation of IK and ICa by AT1a/i3 involves intracellular messengers (G alpha q, protein kinase C, and intracellular Ca2+) that are identical to those involved in the modulation of IK and ICa following ANG II activation of AT1 receptors. These data provide functional evidence for a role of the third cytoplasmic loop of the AT1 receptor in G protein coupling and subsequent modulation of ion channel effectors.


1996 ◽  
Vol 271 (1) ◽  
pp. C154-C163 ◽  
Author(s):  
C. Sumners ◽  
M. Zhu ◽  
C. H. Gelband ◽  
P. Posner

Angiotensin II (ANG II) elicits an ANG II type 1 (AT1) receptor-mediated decrease in voltage-dependent K+ current (Ik) and an incrase in voltage-dependent Ca2+ current (ICa) in neurons cocultured from newborn rat hypothalamus and brain stem. Modulation of these currents by ANG II involves intracellular messengers that result from an AT1 receptor-mediated stimulation of phosphoinositide hydrolysis. For example, the effects of ANG II on IK and ICa were abolished by phospholipase C antagonists. The reduction in IK produced by ANG II was attenuated by either protein kinase C (PKC) antagonists or by chelation of intracellular Ca2+. By contrast, PKC antagonism abolished the stimulatory effect of ANG II on ICa. Superfusion of the PKC activator phorbol 12-myristate 13-acetate produced effects on IK and ICa similar to those observed after ANG II. Furthermore, intracellular application of inositol 1,4,5-trisphosphate (IP3) elicited a significant reduction in IK. This suggests that the AT1 receptor-mediated changes in neuronal K+ and Ca2+ currents involve PKC (both IK and ICa) and IP3 and/or intracellular Ca2+ (IK).


2021 ◽  
Vol 8 ◽  
Author(s):  
Aarón Guerrero ◽  
Bruna Visniauskas ◽  
Pilar Cárdenas ◽  
Stefanny M. Figueroa ◽  
Jorge Vivanco ◽  
...  

Diabetes mellitus (DM) causes high glucose (HG) levels in the plasma and urine. The (pro)renin receptor (PRR) is a key regulator of renal Na+ handling. PRR is expressed in intercalated (IC) cells of the collecting duct (CD) and binds renin to promote angiotensin (Ang) II formation, thereby contributing to Na+ reabsorption. In DM, the Kreb's cycle is in a state of suppression in most tissues. However, in the CD, expression of glucose transporters is augmented, boosting the Kreb's cycle and consequently causing α-ketoglutarate (αKG) accumulation. The αKG receptor 1 (OXGR1) is a Gq-coupled receptor expressed on the apical membrane of IC cells of the CD. We hypothesize that HG causes αKG secretion and activation of OXGR1, which increases PRR expression in CD cells. This effect then promotes intratubular AngII formation and Na+ reabsorption. To test this hypothesis, streptozotocin (STZ)-induced diabetic mice were treated with or without montelukast (ML), an OXGR1 antagonist, for 6 days. STZ mice had higher urinary αKG and PRR expression along with augmented urinary AngII levels and Na+ retention. Treatment with ML prevented all these effects. Similarly, primary cultured inner medullary CD cells treated with HG showed increased PRR expression, while OXGR1 antagonist prevented this effect. αKG increases PRR expression, while treatments with ML, PKC inhibition, or intracellular Ca2+ depletion impair this effect. In silico analysis suggested that αKG binds to mouse OXGR1. These results indicate that HG conditions promote increased levels of intratubular αKG and OXGR1-dependent PRR upregulation, which impact AngII formation and Na+ reabsorption.


Author(s):  
Julia Schrankl ◽  
Michaela Fuchs ◽  
Katharina Broeker ◽  
Christoph Daniel ◽  
Armin Kurtz ◽  
...  

The kidneys are an important target for angiotensin II (ANG II). In the adult kidneys the effects of ANG II are mediated mainly by ANG II type 1 (AT1) receptors. AT1 receptor expression has been reported for a variety of different cell types within the kidneys, suggesting a broad spectrum of actions for ANG II. Since there have been heterogeneous results in the literature regarding the intrarenal distribution of AT1 receptors, this study aimed to obtain a comprehensive overview about the localization of AT1 receptor expression in mouse, rat and human kidneys. Using the cell specific and high-resolution RNAscope technique, we performed colocalization studies with various cell markers to specifically discriminate between different segments of the tubular and vascular system. Overall we found a similar pattern of AT1 mRNA expression in mouse, rat and human kidneys. AT1 receptors were detected in mesangial cells and renin-producing cells. In addition, AT1 mRNA was found in interstitial cells of the cortex and outer medulla. In rodents, late afferent and early efferent arterioles expressed AT1 receptor mRNA, but larger vessels of the investigated species showed no AT1 expression. Tubular expression of AT1 mRNA was species-dependent with a strong expression in proximal tubules of mice while expression was undetectable in human tubular cells. These findings suggest that the (juxta)glomerular area and the tubulointerstitium are conserved expression sites for AT1 receptors across species and might present the main target sites for ANG II in adult human and rodent kidneys.


2008 ◽  
Vol 295 (2) ◽  
pp. H835-H841 ◽  
Author(s):  
Zsolt Bagi ◽  
Nora Erdei ◽  
Akos Koller

Previously, we found that high intraluminal pressure leads to production of reactive oxygen species (ROS) and also upregulates several components of the renin-angiotensin system in the wall of small arteries. We hypothesized that acute exposure of arterioles to high intraluminal pressure in vitro via increasing ROS production enhances the functional availability of type 1 angiotensin II (Ang II) receptors (AT1 receptors), resulting in sustained constrictions. In arterioles (∼180 μm) isolated from rat skeletal muscle, Ang II elicited dose-dependent constrictions, which decreased significantly by the second application [maximum (max.): from 59% ± 4% to 26% ± 5% at 10−8 M; P < 0.05] in the presence of 80 mmHg of intraluminal pressure. In contrast, if the arterioles were exposed to high intraluminal pressure (160 mmHg for 30 min), Ang II-induced constrictions remained substantial on the second application (max.: 51% ± 3% at 10−8 M). In the presence of Tiron and polyethylene glycol (PEG)-catalase, known to reduce the level of superoxide anion and hydrogen peroxide (H2O2), second applications of Ang II evoked similarly reduced constrictions, even after high-pressure exposure (29% ± 4% at 10−8 M). Furthermore, when arterioles were exposed to H2O2 (for 30 min, 10−7 M, at normal 80 mmHg pressure), Ang II-induced constrictions remained substantial on second applications (59% ± 5% at 10−8 M). These findings suggest that high pressure, likely via inducing H2O2 production, increases the functional availability of AT1 receptors and thus enhances Ang II-induced arteriolar constrictions. We propose that in hypertension–regardless of etiology–high intraluminal pressure, via oxidative stress, enhances the functional availability of AT1 receptors augmenting Ang II-induced constrictions.


1997 ◽  
Vol 272 (6) ◽  
pp. H2701-H2707 ◽  
Author(s):  
G. Nickenig ◽  
O. Jung ◽  
K. Strehlow ◽  
O. Zolk ◽  
W. Linz ◽  
...  

Low-density lipoprotein increases the AT1-receptor gene expression in vascular smooth muscle cells. To elucidate whether elevated cholesterol serum levels upregulate the AT1 receptor and its functional response to angiotensin II in vivo, we compared 1) the vasoconstrictive effect of angiotensin II and 2) the level of expression of the vascular AT1 receptor in aortas of normocholesterolemic and hypercholesterolemic rabbits. Contraction experiments on isolated aortic rings showed that the angiotensin II-induced vasoconstriction was increased in hypercholesterolemic New Zealand White rabbits compared with normocholesterolemic New Zealand White rabbits. This difference in the angiotensin II-induced vasoconstriction was caused by a twofold increase in the density of cell surface AT1 receptors in hypercholesterolemic rabbits, as assessed by radioligand binding assays. The enhanced expression of AT1 receptors on the surface of these vascular cells was caused by elevated steady-state levels of the AT1-receptor mRNA to 220 +/- 35% in aortas excised from hypercholesterolemic rabbits compared with levels in aortas from normocholesterolemic rabbits, as measured by Northern blot analysis. These data indicate that hypercholesterolemia is associated with upregulation of expression and function of vascular AT1 receptors in vivo. This suggests a novel mechanism by which hypercholesterolemia could be involved in the onset and progression of chronic vascular diseases such as hypertension and arteriosclerosis if the phenomenon is confirmed in humans.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Zhen Zhang ◽  
Chunyan Liu ◽  
Zhenhua Gan ◽  
Xinyi Wang ◽  
Qiuyan Yi ◽  
...  

Recent evidence supported the presence of a local renin-angiotensin system (RAS) in the pancreas, which is implicated in many physiological and pathophysiological processes. We utilized small interfering RNA (siRNA) to investigate the effects of angiotensin II type 1 receptor (AT1R) knockdown on glucose-stimulated insulin secretion (GSIS) in isolated islets of db/db mice and to explore the potential mechanisms involved. We found that Ad-siAT1R treatment resulted in a significant decrease both in AT1R mRNA level and in AT1R protein expression level. With downexpression of AT1R, notable increased insulin secretion and decreased glucagon secretion levels were found by perifusion. Simultaneously, significant increased protein levels of IRS-1 (by 85%), IRS-2 (by 95%), PI3K(85) (by 112.5%), and p-Akt2 (by 164%) were found by western blot. And upregulation of both GLUT-2 (by 190%) and GCK (by 121%) was achieved after AT1R inhibition by Ad-siAT1R. Intraislet AT1R expression level is a crucial physiological regulator of insulin sensitivity ofβcell itself and thus affects glucose-induced insulin and glucagon release. Therefore, the characteristics of AT1R inhibitors could make it a potential novel therapeutics for prevention and treatment of type 2 diabetes.


Sign in / Sign up

Export Citation Format

Share Document