scholarly journals Modulation of PKCδ tyrosine phosphorylation and activity in salivary and PC-12 cells by Src kinases

2001 ◽  
Vol 280 (6) ◽  
pp. C1498-C1510 ◽  
Author(s):  
Cyril Benes ◽  
Stephen P. Soltoff

Protein kinase C (PKC) δ becomes tyrosine phosphorylated in rat parotid acinar cells exposed to muscarinic and substance P receptor agonists, which initiate fluid secretion in this salivary cell. Here we examine the signaling components of PKCδ tyrosine phosphorylation and effects of phosphorylation on PKCδ activity. Carbachol- and substance P-promoted increases in PKCδ tyrosine phosphorylation were blocked by inhibiting phospholipase C (PLC) but not by blocking intracellular Ca2+ concentration elevation, suggesting that diacylglycerol, rather than d- myo-inositol 1,4,5-trisphosphate production, positively modulated this phosphorylation. Stimuli-dependent increases in PKCδ activity in parotid and PC-12 cells were blocked in vivo by inhibitors of Src tyrosine kinases. Dephosphorylation of tyrosine residues by PTP1B, a protein tyrosine phosphatase, reduced the enhanced PKCδ activity. Lipid cofactors modified the tyrosine phosphorylation-dependent PKCδ activation. Two PKCδ regulatory sites (Thr-505 and Ser-662) were constitutively phosphorylated in unstimulated parotid cells, and these phosphorylations were not altered by stimuli that increased PKCδ tyrosine phosphorylation. These results demonstrate that PKCδ activity is positively modulated by tyrosine phosphorylation in parotid and PC-12 cells and suggest that PLC-dependent effects of secretagogues on salivary cells involve Src-related kinases.

Blood ◽  
1996 ◽  
Vol 87 (11) ◽  
pp. 4495-4501 ◽  
Author(s):  
T Tauchi ◽  
JE Damen ◽  
K Toyama ◽  
GS Feng ◽  
HE Broxmeyer ◽  
...  

Erythropoietin (Epo), the primary in vivo stimulator of erythroid proliferation and differentiation, acts, in part, by altering the tyrosine phosphorylation levels of various intracellular signaling molecules. These phosphorylation levels are tightly regulated by both tyrosine kinases and tyrosine phosphatases. We have recently shown that the SH2 containing tyrosine phosphatase, Syp, binds directly to both the tyrosine phosphorylated form of the Epo receptor (EpoR) and to Grb2 after Epo stimulation of M07e cells engineered to express high levels of human EpoRs (T. Tauchi, et al: J Biol Chem 270:5631, 1995). To determine which tyrosine within the EpoR is responsible for binding Syp, we examined DA-3 cell lines expressing full-length mutant EpoRs bearing tyrosine to phenylalanine substitutions for each of the eight tyrosines within the intracellular domain of the EpoR. We found that: (1) all Epo-stimulated mutant EpoRs, except for the Y425F EpoR, coimmunoprecipitated with Syp; (2) all Epo-stimulated mutant EpoRs, except for the Y425F EpoR, bound to a GST-fusion protein containing both SH2 domains of Syp; (3) Jak2 could phosphorylate GST-Syp in vitro after Epo stimulation of wild-type (wt) EpoR expressing DA-3 cells; (4) Epo-stimulated tyrosine phosphorylation of Syp in vivo was markedly reduced in Y425F EpoR expressing DA-3 calls; and (5) DA-3 cells expressing the Y425F EpoR grow less well in response to Epo than wt EpoR expressing cells. These results suggest that Syp binds via its SH2 domains to phosphorylated Y425 within the EpoR and is then phosphorylated on tyrosine residues by Jak2. Moreover, Y425 in the EpoR reduces the Epo requirement for Syp tyrosine phosphorylation and promotes proliferation.


1991 ◽  
Vol 276 (3) ◽  
pp. 611-619 ◽  
Author(s):  
S Trudel ◽  
M R Pâquet ◽  
S Grinstein

Vanadate induces phosphotyrosine accumulation and activates O2 consumption in permeabilized differentiated HL60 cells. NADPH, the substrate of the respiratory burst oxidase, was found to be necessary not only for the increased O2 consumption, but also for tyrosine phosphorylation. The effect of NADPH was not due to reduction of vanadate to vanadyl. Instead, NADPH was required for the synthesis of superoxide, which triggered the formation of peroxovanadyl [V(4+)-OO] and vanadyl hydroperoxide [V(4+)-OOH]. One or both of these species, rather than vanadate itself, appears to be responsible for phosphotyrosine accumulation and activation of the respiratory burst. Accordingly, the stimulatory effects of vanadate and NADPH were abrogated by superoxide dismutase. Moreover, phosphorylation was activated in the absence of NADPH by treatment with V(4+)-OO and/or V(4+)-OOH, generated by treatment of orthovanadate with KO2 or H2O2 respectively. The main source of the superoxide involved in the formation of V(4+)-OO and V(4+)-OOH is the NADPH oxidase. This was shown by the inhibitory effects of diphenylene iodonium and by the failure of undifferentiated cells, which lack oxidase activity, to undergo tyrosine phosphorylation when treated with vanadate and NADPH. By contrast, exogenously generated V(4+)-OO induced marked phosphorylation in the undifferentiated cells, demonstrating the presence of the appropriate tyrosine kinases and phosphatases. A good correlation was found to exist between induction of tyrosine phosphorylation and activation of the respiratory burst, suggesting a causal relationship. Therefore an amplification cycle appears to exist in cells treated with vanadate, whereby trace amounts of superoxide initiate the formation of V(4+)-OO and/or V(4+)-OOH. These peroxides promote phosphotyrosine formation, most likely by inhibition of tyrosine phosphatases. Accumulation of critical tyrosine-phosphorylated proteins then initiates a respiratory burst, with abundant production of superoxide. The newly formed superoxide catalyses the formation of additional V(4+)-OO and/or V(4+)-OOH, thereby magnifying the response. Since vanadium derivatives are ubiquitous in animal tissues, V(4+)-OO and/or V(4+)-OOH could be formed in vivo by reduced O2 metabolites, becoming potential endogenous tyrosine phosphatase inhibitors. Because of their potency, peroxides of vanadate may be useful as probes for the study of protein phosphotyrosine turnover.


1995 ◽  
Vol 15 (12) ◽  
pp. 7050-7058 ◽  
Author(s):  
M David ◽  
H E Chen ◽  
S Goelz ◽  
A C Larner ◽  
B G Neel

Interferons (IFNs) induce early-response genes by stimulating Janus family (Jak) tyrosine kinases, leading to tyrosine phosphorylation of Stat transcription factors. Previous studies implicated protein-tyrosine phosphatase (PTP) activity in the control of IFN-regulated Jak/Stat signaling, but the specific PTPs responsible remained unidentified. We have found that SH2 domain-containing PTP1 (SHPTP1; also called PTP1C, HCP, or SHP) reversibly associates with the IFN-alpha receptor complex upon IFN addition. Compared with macrophages from normal littermate controls, macrophages from motheaten mice, which lack SHPTP1, show dramatically increased Jak1 and Stat1 alpha tyrosine phosphorylation, whereas Tyk2 and Stat2 activation is largely unaffected. These findings correlate with selectively increased complex formation on a gamma response element, but not an IFN-stimulated response element, in motheaten macrophages. Our results establish that SHPTP1 selectively regulates distinct components of Jak/Stat signal transduction pathways in vivo.


2009 ◽  
Vol 297 (1) ◽  
pp. C133-C139 ◽  
Author(s):  
Shirley C. Chen ◽  
Ranvikram S. Khanna ◽  
Darrell C. Bessette ◽  
Lionel A. Samayawardhena ◽  
Catherine J. Pallen

Protein tyrosine phosphatase-α (PTPα) is a widely expressed receptor-type phosphatase that functions in multiple signaling systems. The actions of PTPα can be regulated by its phosphorylation on serine and tyrosine residues, although little is known about the conditions that promote PTPα phosphorylation. In this study, we tested the ability of several extracellular factors to stimulate PTPα tyrosine phosphorylation. The growth factors IGF-I and acidic FGF induced the highest increase in PTPα phosphorylation at tyrosine 789, followed by PMA and lysophosphatidic acid, while EGF had little effect. Further investigation of IGF-I-induced PTPα tyrosine phosphorylation demonstrated that this occurs through a novel Src family kinase-independent mechanism that does not require focal adhesion kinase, phosphatidylinositol 3-kinase, or MEK. We also show that PTPα physically interacts with the IGF-I receptor. In contrast to IGF-I-induced PTPα phosphorylation, this association does not require IGF-I. The interaction of PTPα and the IGF-I receptor is independent of PTPα catalytic activity, and expression of exogenous PTPα does not promote IGF-I receptor tyrosine dephosphorylation, indicating that PTPα does not act as an IGF-I receptor phosphatase. However, PTPα mediates IGF-I signaling, because IGF-I-stimulated fibroblast migration was reduced by ∼50% in cells lacking PTPα or in cells with mutant PTPα lacking the tyrosine 789 phosphorylation site. Our results suggest that PTPα tyrosine phosphorylation can occur in response to diverse stimuli and can be mediated by various tyrosine kinases. In the case of IGF-I, we propose that IGF-I-induced tyrosine 789 phosphorylation of PTPα, possibly catalyzed by the PTPα-associated IGF-I receptor tyrosine kinase, is required for efficient cell migration in response to this growth factor.


2007 ◽  
Vol 292 (4) ◽  
pp. L915-L923 ◽  
Author(s):  
Jaime Chávez ◽  
Patricia Segura ◽  
Mario H. Vargas ◽  
José Luis Arreola ◽  
Edgar Flores-Soto ◽  
...  

Organophosphates induce bronchoobstruction in guinea pigs, and salbutamol only transiently reverses this effect, suggesting that it triggers additional obstructive mechanisms. To further explore this phenomenon, in vivo (barometric plethysmography) and in vitro (organ baths, including ACh and substance P concentration measurement by HPLC and immunoassay, respectively; intracellular Ca2+ measurement in single myocytes) experiments were performed. In in vivo experiments, parathion caused a progressive bronchoobstruction until a plateau was reached. Administration of salbutamol during this plateau decreased bronchoobstruction up to 22% in the first 5 min, but thereafter airway obstruction rose again as to reach the same intensity as before salbutamol. Aminophylline caused a sustained decrement (71%) of the parathion-induced bronchoobstruction. In in vitro studies, paraoxon produced a sustained contraction of tracheal rings, which was fully blocked by atropine but not by TTX, ω-conotoxin (CTX), or epithelium removal. During the paraoxon-induced contraction, salbutamol caused a temporary relaxation of ∼50%, followed by a partial recontraction. This paradoxical recontraction was avoided by the M2- or neurokinin-1 (NK1)-receptor antagonists (methoctramine or AF-DX 116, and L-732138, respectively), accompanied by a long-lasting relaxation. Forskolin caused full relaxation of the paraoxon response. Substance P and, to a lesser extent, ACh released from tracheal rings during 60-min incubation with paraoxon or physostigmine, respectively, were significantly increased when salbutamol was administered in the second half of this period. In myocytes, paraoxon did not produce any change in the intracellular Ca2+ basal levels. Our results suggested that: 1) organophosphates caused smooth muscle contraction by accumulation of ACh released through a TTX- and CTX-resistant mechanism; 2) during such contraction, salbutamol relaxation is functionally antagonized by the stimulation of M2 receptors; and 3) after this transient salbutamol-induced relaxation, a paradoxical contraction ensues due to the subsequent release of substance P.


Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Suowen Xu ◽  
Marina Koroleva ◽  
Keigi Fujiwara ◽  
Zheng Gen Jin

Introduction: Impaired activation of endothelial nitric oxide (NO) synthase (eNOS) and ensued NO production is a common mechanism of various cardiovascular pathologies, including hypertension and atherosclerosis. Specific signaling cascades, generated by vascular endothelial cells (ECs) in response to laminar flow, modulate EC structure and functions, NO production in particular. We have previously shown that flow-stimulated Gab1 (Grb2-associated binder-1) tyrosine phosphorylation mediates eNOS activation. However, the upstream mechanism that regulates Gab1 tyrosine phosphorylation remains unclear. Hypothesis: We hypothesized that platelet endothelial cell adhesion molecule-1 (PECAM1), a key molecule in an endothelial mechanosensing complex, specifically mediates Gab1 tyrosine phosphorylation and its downstream Akt and eNOS activation in ECs upon flow rather than hepatocyte growth factor (HGF) stimulation. Methods: Western blot, en face staining and voluntary wheel running. Results: Small interfering RNA (siRNA) targeting PECAM1 abolished flow- but not HGF-induced Gab1 tyrosine phosphorylation and Akt, eNOS activation as well as Gab1 membrane translocation. Protein-tyrosine phosphatase SHP2, which has been shown to interact with Gab1, was involved in a flow signaling pathway as well as HGF-induced signaling, as SHP2 siRNA diminished the flow- and HGF-induced Gab1 tyrosine phosphorylation, membrane localization and downstream signaling. Pharmacological inhibition of PI3K by LY294002 decreased flow, but not HGF-mediated Gab1 phosphorylation and membrane localization as well as eNOS activation. Finally, we observed that flow-mediated Gab1 and eNOS phosphorylation in vivo induced by voluntary wheel running was reduced in PECAM1 knockout mice. Conclusions: These results demonstrate a specific role of PECAM1 in flow-mediated Gab1 tyrosine phosphorylation and eNOS signaling in ECs


2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Cinzia Mallozzi ◽  
Alida Spalloni ◽  
Patrizia Longone ◽  
Maria Rosaria Domenici

Degeneration of cortical and spinal motor neurons is the typical feature of amyotrophic lateral sclerosis (ALS), a progressive neurodegenerative disease for which a pathogenetic role for the Cu/Zn superoxide dismutase (SOD1) has been demonstrated. Mice overexpressing a mutated form of the SOD1 gene (SOD1G93A) develop a syndrome that closely resembles the human disease. The SOD1 mutations confer to this enzyme a “gain-of-function,” leading to increased production of reactive oxygen species. Several oxidants induce tyrosine phosphorylation through direct stimulation of kinases and/or phosphatases. In this study, we analyzed the activities of src and fyn tyrosine kinases and of protein tyrosine phosphatases in synaptosomal fractions prepared from the motor cortex and spinal cord of transgenic mice expressing SOD1G93A. We found that (i) protein phosphotyrosine level is increased, (ii) src and fyn activities are upregulated, and (iii) the activity of tyrosine phosphatases, including the striatal-enriched tyrosine phosphatase (STEP), is significantly decreased. Moreover, the NMDA receptor (NMDAR) subunit GluN2B tyrosine phosphorylation was upregulated in SOD1G93A. Tyrosine phosphorylation of GluN2B subunits regulates the NMDAR function and the recruitment of downstream signaling molecules. Indeed, we found that proline-rich tyrosine kinase 2 (Pyk2) and ERK1/2 kinase are upregulated in SOD1G93A mice. These results point out an involvement of tyrosine kinases and phosphatases in the pathogenesis of ALS.


1995 ◽  
Vol 268 (1) ◽  
pp. C154-C161 ◽  
Author(s):  
G. Bischof ◽  
B. Illek ◽  
W. W. Reenstra ◽  
T. E. Machen

We studied a possible role of tyrosine kinases in the regulation of Ca entry into colonic epithelial cells HT-29/B6 using digital image processing of fura 2 fluorescence. Both carbachol and thapsigargin increased Ca entry to a similar extent and Ca influx was reduced by the tyrosine kinase inhibitor genistein (50 microM). Further experiments were performed in solutions containing 95 mM K to depolarize the membrane potential, and the effects of different inhibitors on influx of Ca, Mn, and Ba were compared. Genistein, but not the inactive analogue daidzein nor the protein kinase C inhibitor 1-(5-isoquinolinylsulfonyl)-2- methylpiperazine, decreased entry of all three divalent cations by 47-59%. In high-K solutions, carbachol or thapsigargin both caused intracellular Ca to increase to a plateau of 223 +/- 19 nM. This plateau was reduced by the tyrosine kinase inhibitors genistein (to 95 +/- 8 nM), lavendustin A (to 155 +/- 17 nM), and methyl-2,5-dihydroxycinnamate (to 39 +/- 3 nM). Orthovanadate, a protein tyrosine phosphatase inhibitor, prevented the inhibitory effect of genistein. Ca pumping was unaffected by genistein. Carbachol increased tyrosine phosphorylation (immunoblots with anti-phosphotyrosine antibodies) of 110-, 75-, and 70-kDa proteins, and this phosphorylation was inhibited by genistein. We conclude that carbachol and thapsigargin increase Ca entry, and tyrosine phosphorylation of some key proteins may be important for regulating this pathway.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 4355-4355
Author(s):  
Pablo Perez-Pinera ◽  
Wei Zhang ◽  
Zhaoyi Wang ◽  
James R. Berenson ◽  
Thomas F. Deuel

Abstract Anaplastic Lymphoma Kinase (ALK) is a receptor-type transmembrane tyrosine kinase (RTK) of the insulin receptor superfamily that structurally is most closely related to leukocyte tyrosine kinase. It was first discovered as a chimeric protein (NPM-ALK) of nucleophosmin and the C-terminal (kinase) domain of ALK in anaplastic large cell lymphomas (ALCL). NPM-ALK is constitutively active and generates the oncogenic signals that are the pathogenic mechanisms of these highly malignant cancers. The full-length ALK also is believed to have an important role in the pathogenesis of other human malignancies, since its expression is found in rhabdomyosarcomas, neuroblastomas, neuroectodermal tumors, glioblastomas, breast carcinomas, and melanomas. Recently it was proposed that pleiotrophin (PTN the protein, Ptn the gene) is the ligand that stimulates ALK to transduce signals to activate downstream targets. However, this proposal contrasted with earlier studies that demonstrated Receptor Protein Tyrosine Phosphatase (RPTP)β/ζ is the functional receptor for PTN. PTN was shown to inactivate RPTPβ/ζ and thereby permit the activity of different tyrosine kinases to increase tyrosine phosphorylation of the substrates of RPTPβ/ζ at the sites that are dephosphorylated by RPTPβ/ζ in cells not stimulated by PTN. Subsequent studies identified β-catenin, β-adducin, Fyn, GIT1/Cat-1, P190RhoGAP, and histone deacetylase 2 (HDAC-2) as downstream targets of the PTN/RPTPβ/ζ signaling pathway and demonstrated that their levels of tyrosine phosphorylation increase in PTN-stimulated cells. This diversity of PTN-regulated targets is one basis for the pleiotrophic activities of PTN. We now demonstrate that tyrosine phosphorylation of ALK is increased in PTN-stimulated cells through the PTN/RPTPβ/ζ signaling pathway. It is furthermore shown that ALK is activated in PTN-stimulated cells when it is expressed in cells without its extracellular domain, that β-catenin is a substrate of ALK, that the tyrosine phosphorylation site in β-catenin phosphorylated by ALK is the same site dephosphorylated by RPTPβ/ζ, and that PTN-stimulated tyrosine phosphorylation of β-catenin requires expression of ALK. The data suggest a unique mechanism to activate ALK; the data support a mechanism in which β-catenin is phosphorylated in tyrosine through the coordinated inactivation of RPTPβ/ζ, the activation of the tyrosine kinase activity of ALK, and the phosphorylation of β-catenin by ALK at the same site regulated by RPTPβ/ζ in PTN-stimulated cells. Since PTN often is inappropriately expressed in the same malignancies that express ALK, the data suggest a mechanism through which ALK signaling may contribute to those malignancies that express full length ALK through the activity of PTN to signal constitutively the same pathways as NPM-ALK in ALCL.


2010 ◽  
Vol 299 (4) ◽  
pp. C844-C853 ◽  
Author(s):  
Signe Skyum Kirkegaard ◽  
Ian Henry Lambert ◽  
Steen Gammeltoft ◽  
Else Kay Hoffmann

The swelling-activated K+ currents ( IK,vol) in Ehrlich ascites tumor cells (EATC) has been reported to be through the two-pore domain (K2p), TWIK-related acid-sensitive K+ channel 2 (TASK-2). The regulatory volume decrease (RVD), following hypotonic exposure in EATC, is rate limited by IK,vol indicating that inhibition of RVD reflects inhibition of TASK-2. We find that in EATC the tyrosine kinase inhibitor genistein inhibits RVD by 90%, and that the tyrosine phosphatase inhibitor monoperoxo(picolinato)-oxo-vanadate(V) [mpV(pic)] shifted the volume set point for inactivation of the channel to a lower cell volume. Swelling-activated K+ efflux was impaired by genistein and the Src kinase family inhibitor 4-amino-5-(4-chloro-phenyl)-7-( t-butyl)pyrazolo[3,4- d]pyrimidine (PP2) and enhanced by the tyrosine phosphatase inhibitor mpV(pic). With the use of the TASK-2 inhibitor clofilium, it is demonstrated that mpV(pic) increased the volume-sensitive part of the K+ efflux 1.3 times. To exclude K+ efflux via a KCl cotransporter, cellular Cl− was substituted with NO3−. Also under these conditions K+ efflux was completely blocked by genistein. Thus tyrosine kinases seem to be involved in the activation of the volume-sensitive K+ channel, whereas tyrosine phosphatases appears to be involved in inactivation of the channel. Overexpressing TASK-2 in human embryonic kidney (HEK)-293 cells increased the RVD rate and reduced the volume set point. TASK-2 has tyrosine sites, and precipitation of TASK-2 together with Western blotting and antibodies against phosphotyrosines revealed a cell swelling-induced, time-dependent tyrosine phosphorylation of the channel. Even though we found an inhibiting effect of PP2 on RVD, neither Src nor the focal adhesion kinase (FAK) seem to be involved. Inhibitors of the epidermal growth factor receptor tyrosine kinases had no effect on RVD, whereas the Janus kinase (JAK) inhibitor cucurbitacin inhibited the RVD by 40%. It is suggested that the cytokine receptor-coupled JAK/STAT pathway is upstream of the swelling-induced phosphorylation and activation of TASK-2 in EATC.


Sign in / Sign up

Export Citation Format

Share Document