FRP inhibits ox-LDL-induced endothelial cell apoptosis through an Akt-NF-κB-Bcl-2 pathway and inhibits endothelial cell apoptosis in an apoE-knockout mouse model

2010 ◽  
Vol 299 (3) ◽  
pp. E351-E363 ◽  
Author(s):  
Shu Liu ◽  
Hua Shen ◽  
Ming Xu ◽  
Ou Liu ◽  
Limin Zhao ◽  
...  

Atherosclerosis is the most common cause of cardiovascular diseases in the world. Although the development of atherosclerosis appears to be the result of multiple maladaptive pathways, a particularly important factor in the pathogenesis of atherosclerosis is oxidized low-density lipoprotein (ox-LDL), which contributes to endothelial damage. Data from our laboratory and others show that follistatin-related protein (FRP), which is expressed in the vasculature, has cardioprotective effects, suggesting that loss of FRP protection might play a role in the development of atherosclerosis. In the present study, we determined whether FRP overexpression protects against endothelial cell (EC) damage, an intermediate end point for atherosclerosis. We bred apoE-knockout (apoE−/−) mice that were FRP+ transgenic (they overexpressed FRP). We compared them with control mice (their littermates). Human umbilical vein endothelial cells (HUVECs) were isolated and treated with ox-LDL and recombinant FRP. FRP-induced signal transduction and Bcl-2 mRNA and protein stability were analyzed. After 16 wk, apoE−/− FRP+ mice had significantly fewer apoptotic ECs than controls. In vitro experiments showed that the effect of FRP on EC apoptosis was mediated by upregulation of expression of the antiapoptotic protein Bcl-2. In HUVECs, FRP upregulated Bcl-2 transcription via a PI3K-Akt-NF-κB pathway. We conclude that FRP overexpression maintains EC viability by preventing apoptosis via Bcl-2 upregulation. FRP may be a novel therapeutic target for the prevention and treatment of vascular EC injury and of atherosclerosis.

Vascular ◽  
2022 ◽  
pp. 170853812110409
Author(s):  
Shang Ouyang ◽  
Ou Zhang ◽  
Hua Xiang ◽  
Yuan-Hui Yao ◽  
Zhi-Yong Fang

Objectives: Atherosclerosis is a dominant cardiovascular disease. Curcumin has protective effect on atherosclerosis. However, the mechanisms remain to be explored. Methods: Atherosclerosis was induced by feeding mice with high-fat diet (HFD) and ox-low-density lipoprotein (LDL)-induced human umbilical vein endothelial cells (HUVECs) were structured. Oil Red O staining was used to evaluate the plaques in the artery. Quantitative real-time PCR (qRT-PCR) was conducted to detect the level of myocardial infarction associated transcript (MIAT), miR-124, and enhancer of zeste homolog 2 (EZH2). We performed western blotting and enzyme linked immunosorbent assay to examine the expression of EZH2 and cytokines including IL-1β, TNFα, IL-6, and IL-8, respectively. RNA immunoprecipitation and chromatin immunoprecipitation (ChIP) were used to validate the interaction between myocardial infarction associated transcript and EZH2. Flow cytometry and CCK-8 assay were used to examine cell apoptosis and proliferation, respectively. Results: Curcumin suppressed inflammation in atherosclerosis mouse model and ox-LDL-induced cell model. MIAT overexpression and miR-124 inhibition relieved the anti-inflammation effect of curcumin in ox-LDL-induced cell. MIAT regulated miR-124 by interacting with EZH2. Curcumin relieved ox-LDL-induced cell inflammation via regulating MIAT/miR-124 pathway. Conclusion: MIAT/miR-124 axis mediated the effect of curcumin on atherosclerosis and altered cell apoptosis and proliferation, both in vivo and in vitro. These data further support the application of curcumin in control of atherosclerosis advancement.


1991 ◽  
Vol 260 (1) ◽  
pp. C43-C49 ◽  
Author(s):  
K. A. Pritchard ◽  
S. M. Schwarz ◽  
M. S. Medow ◽  
M. B. Stemerman

To determine the effects of prolonged low-density lipoprotein (LDL) exposure in vitro on cultured endothelial cell (EC) lipid dynamics and cellular function, human umbilical vein ECs were incubated in LDL concentrations [cholesterol (Chol) = 240 mg/dl] associated with the premature development of atherosclerosis. After 4 days of incubation, cells were examined for changes in cellular lipid composition and for membrane fluidity. Results indicate that LDL-EC have increased Chol content (control EC vs. LDL-EC = 22.4 +/- 5.26 vs. 38.9 +/- 0.24 nmol/10(6) cells, P less than 0.05) and cellular Chol-to-phospholipid ratio (0.61 +/- 0.10 vs. 1.21 +/- 0.10 mol/mol, P less than 0.05). Augmentation of EC Chol content was accompanied by a marked decrease in EC cellular membrane fluidity as assessed by fluorescence polarization (anisotropy, r values, 0.172 +/- 0.019 vs. 0.226 +/- 0.014, P less than 0.0001). LDL-induced changes in EC lipid dynamics were associated with enhanced EC binding of monocytes (P less than 0.05) and U937 cells (P less than 0.01). Both LDL-induced decreases in membrane fluidity and enhanced attachment of mononuclear cells were reversed to control levels following a 2-min incubation of LDL-EC with the membrane mobility agent, A2C. These data therefore suggest that LDL-induced modulations in lipid dynamics play an important role in perturbation of EC function.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9203
Author(s):  
Shu Wang ◽  
Mingyu Wu ◽  
Ling Qin ◽  
Yaxiang Song ◽  
Ai Peng

Backgroud and Purpose Hyperphosphatemia, which is a high inorganic phosphate (Pi) level in the serum, promotes endothelial cells dysfunction and is associated with cardiovascular diseases in patients with chronic kidney diseases (CKD). However, the underlying mechanism of high Pi-induced endothelia cell apoptosis remains unclear. Methods Human umbilical vein endothelial cells (HUVECs) were treated with normal Pi (1.0 mM) and high Pi (3.0 mM), and then cell apoptosis, abnormal gene expression and potential signaling pathway involvement in simulated hyperphosphatemia were examined using flow cytometry, quantitative PCR (qPCR) and western blot analysis. A two-step 5/6 nephrectomy was carried out to induce CKD and biochemical measurements were taken. Results The rat model of CKD revealed that hyperphosphatemia is correlated with an increased death-domain associated protein (DAXX) expression in endothelial cells. In vitro, high Pi increased the mRNA and protein expression level of DAXX in HUVECs, effects that were reversed by additional phosphonoformic acid treatment. Functionally, high Pi resulted in a significantly increased apoptosis in HUVECs, whereas DAXX knockdown markedly repressed high Pi-induced cell apoptosis, indicating that DAXX mediated high Pi-induced endothelial cell apoptosis. High Pi treatment and DAXX overexpression induced the activation of extracellular regulated protein kinases (ERKs), while DAXX knockdown inhibited high Pi-induced ERKs activation. Finally, we demonstrated that DAXX overexpression induced HUVECs apoptosis in the presence of normal Pi, whereas additional treatment with U0126 (a specific ERK inhibitor) reversed that effect. Conclusion Upregulated DAXX promoted high Pi-induced HUVECs apoptosis by activating ERK signaling and indicated that the DAXX/ERK signaling axis may be served as a potential target for CKD therapy.


Sign in / Sign up

Export Citation Format

Share Document