scholarly journals Fetal androgen signaling defects affect pancreatic β-cell mass and function, leading to glucose intolerance in high-fat diet-fed male rats

2019 ◽  
Vol 317 (5) ◽  
pp. E731-E741 ◽  
Author(s):  
Naoki Harada ◽  
Yusuke Yotsumoto ◽  
Takahiro Katsuki ◽  
Yasuhiro Yoda ◽  
Tatsuya Masuda ◽  
...  

We previously demonstrated that androgen signaling expands pancreatic β-cell mass in the sexual maturation period ( Am J Physiol Endocrinol Metab 314: E274–E286, 2018). The aim of this study was to elucidate whether fetal androgen signaling plays important roles in β-cell mass development and β-cell function in adulthood, defects of which are associated with type 2 diabetes mellitus. In the pancreas of male fetuses, androgen receptor (AR) was strongly expressed in the cytoplasm and at the cell membrane of Nkx6.1-positive β-cell precursor cells but was markedly reduced in insulin-positive β-cells. Administration of the anti-androgen flutamide to pregnant dams during late gestation reduced β-cell mass and Ki67-positive proliferating β-cells at birth in a male-specific manner without affecting body weight. The decrease of β-cell mass in flutamide-exposed male rats was not recovered when rats were fed a standard diet, whereas it was fully recovered when rats were fed a high-fat diet (HFD), at 6 and 12 wk of age. Flutamide exposure in utero led to the development of glucose intolerance in male rats due to a decrease in insulin secretion when fed HFD but not standard diet. Insulin sensitivity did not differ between the two groups irrespective of diet. These results indicated that the action of fetal androgen contributed to β-cell mass expansion in a sex-specific manner at birth and to the development of glucose intolerance by decreasing the secretion of insulin in HFD-fed male rats. Our data demonstrated the involvement of fetal androgen signaling in hypothesized sex differences in the developmental origins of health and disease by affecting pancreatic β-cell function.

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Idil I. Aigha ◽  
Essam M. Abdelalim

Abstract Understanding the biology underlying the mechanisms and pathways regulating pancreatic β cell development is necessary to understand the pathology of diabetes mellitus (DM), which is characterized by the progressive reduction in insulin-producing β cell mass. Pluripotent stem cells (PSCs) can potentially offer an unlimited supply of functional β cells for cellular therapy and disease modeling of DM. Homeobox protein NKX6.1 is a transcription factor (TF) that plays a critical role in pancreatic β cell function and proliferation. In human pancreatic islet, NKX6.1 expression is exclusive to β cells and is undetectable in other islet cells. Several reports showed that activation of NKX6.1 in PSC-derived pancreatic progenitors (MPCs), expressing PDX1 (PDX1+/NKX6.1+), warrants their future commitment to monohormonal β cells. However, further differentiation of MPCs lacking NKX6.1 expression (PDX1+/NKX6.1−) results in an undesirable generation of non-functional polyhormonal β cells. The importance of NKX6.1 as a crucial regulator in MPC specification into functional β cells directs attentions to further investigating its mechanism and enhancing NKX6.1 expression as a means to increase β cell function and mass. Here, we shed light on the role of NKX6.1 during pancreatic β cell development and in directing the MPCs to functional monohormonal lineage. Furthermore, we address the transcriptional mechanisms and targets of NKX6.1 as well as its association with diabetes.


2008 ◽  
Vol 28 (9) ◽  
pp. 2971-2979 ◽  
Author(s):  
Yutaka Shigeyama ◽  
Toshiyuki Kobayashi ◽  
Yoshiaki Kido ◽  
Naoko Hashimoto ◽  
Shun-ichiro Asahara ◽  
...  

ABSTRACT Recent studies have demonstrated the importance of insulin or insulin-like growth factor 1 (IGF-1) for regulation of pancreatic β-cell mass. Given the role of tuberous sclerosis complex 2 (TSC2) as an upstream molecule of mTOR (mammalian target of rapamycin), we examined the effect of TSC2 deficiency on β-cell function. Here, we show that mice deficient in TSC2, specifically in pancreatic β cells (βTSC2−/− mice), manifest increased IGF-1-dependent phosphorylation of p70 S6 kinase and 4E-BP1 in islets as well as an initial increased islet mass attributable in large part to increases in the sizes of individual β cells. These mice also exhibit hypoglycemia and hyperinsulinemia at young ages (4 to 28 weeks). After 40 weeks of age, however, the βTSC2−/− mice develop progressive hyperglycemia and hypoinsulinemia accompanied by a reduction in islet mass due predominantly to a decrease in the number of β cells. These results thus indicate that TSC2 regulates pancreatic β-cell mass in a biphasic manner.


2007 ◽  
Vol 103 (5) ◽  
pp. 1764-1771 ◽  
Author(s):  
Sunmin Park ◽  
Sang Mee Hong ◽  
Ji Eun Lee ◽  
So Ra Sung

In this study, we investigated the effects of a high-fat diet and exercise on pancreatic β-cell function and mass and its molecular mechanism in 90% pancreatectomized male rats. The pancreatectomized diabetic rats were given control diets (20% energy) or a high-fat (HF) diet (45% energy) for 12 wk. Half of each group was given regular exercise on an uphill treadmill at 20 m/min for 30 min 5 days/wk. HF diet lowered first-phase insulin secretion with glucose loading, whereas exercise training reversed this decrease. However, second-phase insulin secretion did not differ among the groups. Exercise increased pancreatic β-cell mass. This resulted from stimulated β-cell proliferation and reduced apoptosis, which is associated with potentiated insulin or IGF-I signaling through insulin receptor substrate-2 (IRS2) induction. Although the HF diet resulted in decreased proliferation and accelerated apoptosis by weakened insulin and IGF-I signaling from reduction of IRS2 protein, β-cell mass was maintained in HF rats just as much as in control rats via increased individual β-cell size and neogenesis from precursor cells. Consistent with the results of β-cell proliferation, pancreas duodenal homeobox-1 expression increased in the islets of rats in the exercise groups, and it was reduced the most in rats fed the HF diet. In conclusion, exercise combined with a moderate fat diet is a good way to maximize β-cell function and mass through IRS2 induction to alleviate the diabetic condition. This study suggests that dietary fat contents and exercise modulate β-cell function and mass to overcome insulin resistance in two different pathways.


2021 ◽  
Author(s):  
Anaïs Schaschkow ◽  
Lokman Pang ◽  
Valerie Vandenbempt ◽  
Bernat Elvira ◽  
Sara A. Litwak ◽  
...  

Most obese and insulin-resistant individuals do not develop diabetes. This is the result of the capacity of β-cells to adapt and produce enough insulin to cover the needs of the organism. The underlying mechanism of β-cell adaptation in obesity, however, remains unclear. Previous studies have suggested a role for STAT3 in mediating β-cell development and human glucose homeostasis, but little is known about STAT3 in β-cells in obesity. We observed enhanced cytoplasmic expression of STAT3 in severely obese and diabetic subjects. To address the functional role of STAT3 in adult β-cells, we generated mice with tamoxifen-inducible partial or full deletion of STAT3 in β-cells and fed them a high-fat diet before analysis. Interestingly, β-cell heterozygous and homozygous STAT3-deficient mice showed glucose intolerance when fed a high-fat diet. Gene expression analysis by RNA-Seq showed reduced expression of mitochondrial genes in STAT3 knocked down human EndoC-βH1 cells and was confirmed in FACS-purified β-cells from obese STAT3-deficient mice. Moreover, silencing of STAT3 impaired mitochondria activity in EndoC-βH1 cells and human islets, suggesting a mechanism for STAT3-modulated β-cell function. We propose STAT3 as a regulator of β-cell function, improving glucose-induced insulin secretion in obesity.


2021 ◽  
Author(s):  
Anaïs Schaschkow ◽  
Lokman Pang ◽  
Valerie Vandenbempt ◽  
Bernat Elvira ◽  
Sara A. Litwak ◽  
...  

Most obese and insulin-resistant individuals do not develop diabetes. This is the result of the capacity of β-cells to adapt and produce enough insulin to cover the needs of the organism. The underlying mechanism of β-cell adaptation in obesity, however, remains unclear. Previous studies have suggested a role for STAT3 in mediating β-cell development and human glucose homeostasis, but little is known about STAT3 in β-cells in obesity. We observed enhanced cytoplasmic expression of STAT3 in severely obese and diabetic subjects. To address the functional role of STAT3 in adult β-cells, we generated mice with tamoxifen-inducible partial or full deletion of STAT3 in β-cells and fed them a high-fat diet before analysis. Interestingly, β-cell heterozygous and homozygous STAT3-deficient mice showed glucose intolerance when fed a high-fat diet. Gene expression analysis by RNA-Seq showed reduced expression of mitochondrial genes in STAT3 knocked down human EndoC-βH1 cells and was confirmed in FACS-purified β-cells from obese STAT3-deficient mice. Moreover, silencing of STAT3 impaired mitochondria activity in EndoC-βH1 cells and human islets, suggesting a mechanism for STAT3-modulated β-cell function. We propose STAT3 as a regulator of β-cell function, improving glucose-induced insulin secretion in obesity.


Endocrinology ◽  
2019 ◽  
Vol 160 (10) ◽  
pp. 2388-2394 ◽  
Author(s):  
Lili Men ◽  
Juan Sun ◽  
Guanzheng Luo ◽  
Decheng Ren

Abstract N6-Methyladenosine (m6A) is the most common and abundant mRNA modification that involves regulating the RNA metabolism. However, the role of m6A in regulating the β-cell function is unclear. Methyltransferase-like 14 (METTL14) is a key component of the m6A methyltransferase complex. To define the role of m6A in regulating the β-cell function, we generated β-cell METTL14-specific knockout (βKO) mice by tamoxifen administration. Acute deletion of Mettl14 in β-cells results in glucose intolerance as a result of a reduction in insulin secretion in β-cells even though β-cell mass is increased, which is related to increased β-cell proliferation. To define the molecular mechanism, we performed RNA sequencing to detect the gene expression in βKO islets. The genes responsible for endoplasmic reticulum stress, such as Ire1α, were among the top upregulated genes. Both mRNA and protein levels of IRE1α and spliced X-box protein binding 1 (sXBP-1) were increased in βKO islets. The protein levels of proinsulin and insulin were decreased in βKO islets. These results suggest that acute METTL14 deficiency in β-cells induces glucose intolerance by increasing the IRE1α/sXBP-1 pathway.


2021 ◽  
Author(s):  
Manuel Blandino-Rosano ◽  
Pau Romaguera-Llacer ◽  
Ashley Lin ◽  
Janardan K Reddy ◽  
Ernesto Bernal-Mizrachi

Type 2 diabetes (T2D) is a metabolic disorder associated with abnormal glucose homeostasis and is characterized by intrinsic defects in β-cell function and mass. Trimethylguanosine synthase 1 (TGS1) is an evolutionarily conserved enzyme that methylates small nuclear and nucleolar RNAs (snRNAs and snoRNAs) and is involved in pre-mRNA splicing, transcription, and ribosome production. However, the role of TGS1 in β-cells and glucose homeostasis had not been explored. Here we show that TGS1 is upregulated by insulin and upregulated in islets from mice exposed to a high-fat diet and in human β-cells from T2D donors. Using mice with conditional (βTGS1KO and βTGS1Het) and inducible (MIP-CreERT-TGS1KO) TGS1 deletion, we determine that TGS1 regulates β-cell mass and function. Unbiased approaches allowed us to identify a link between TGS1 and ER stress and cell cycle arrest and how TGS1 regulates β-cell apoptosis. Deletion of TGS1 results in an increase in the unfolded protein response by increasing XBP-1, ATF-4, and the phosphorylation of eIF2α, and several changes in cell cycle inhibitors and activators such as p27 and Cyclin D2. This study establishes TGS1 as a key player regulating β-cell mass and function as well as playing a role in the adaptive β-cell function to a high-fat diet. These observations can be used as a stepping-stone for the design of novel strategies using TGS1 as a therapeutic target for the treatment of diabetes.


2014 ◽  
Vol 306 (10) ◽  
pp. E1163-E1175 ◽  
Author(s):  
Hisashi Yokomizo ◽  
Toyoshi Inoguchi ◽  
Noriyuki Sonoda ◽  
Yuka Sakaki ◽  
Yasutaka Maeda ◽  
...  

Intrauterine environment may influence the health of postnatal offspring. There have been many studies on the effects of maternal high-fat diet (HFD) on diabetes and glucose metabolism in offspring. Here, we investigated the effects in male and female offspring. C57/BL6J mice were bred and fed either control diet (CD) or HFD from conception to weaning, and offspring were fed CD or HFD from 6 to 20 wk. At 20 wk, maternal HFD induced glucose intolerance and insulin resistance in offspring. Additionally, liver triacylglycerol content, adipose tissue mass, and inflammation increased in maternal HFD. In contrast, extending previous observations, insulin secretion at glucose tolerance test, islet area, insulin content, and PDX-1 mRNA levels in isolated islets were lower in maternal HFD in males, whereas they were higher in females. Oxidative stress in islets increased in maternal HFD in males, whereas there were no differences in females. Plasma estradiol levels were lower in males than in females and decreased in offspring fed HFD and also decreased by maternal HFD, suggesting that females may be protected from insulin deficiency by inhibiting oxidative stress. In conclusion, maternal HFD induced insulin resistance and deterioration of pancreatic β-cell function, with marked sex differences in adult offspring accompanied by adipose tissue inflammation and liver steatosis. Additionally, our results demonstrate that potential mechanisms underlying sex differences in pancreatic β-cell function may be related partially to increases in oxidative stress in male islets and decreased plasma estradiol levels in males.


2019 ◽  
Vol 39 (17) ◽  
Author(s):  
Gulibaikelamu Xiafukaiti ◽  
Shayida Maimaiti ◽  
Kiyohito Ogata ◽  
Akihiro Kuno ◽  
Takashi Kudo ◽  
...  

ABSTRACT The pancreatic-islet-enriched transcription factors MafA and MafB have unique expression patterns in β cells in rodents. MafA is specifically expressed in β cells and is a key regulatory factor for maintaining adult β-cell function, whereas MafB plays an essential role in β-cell development during embryogenesis, and its expression in β cells gradually decreases and is restricted to α cells after birth in rodents. However, it was previously observed that MafB started to be reexpressed in insulin-positive (insulin+) β cells in MafA-deficient adult mice. To elucidate how MafB functions in the adult β cell under MafA-deficient conditions, we generated MafA and MafB double-knockout (A0B0) mice in which MafB was specifically deleted from β cells. As a result, the A0B0 mice became more vulnerable to diabetes under a high-fat diet (HFD) treatment, with impaired islet formation and a decreased number of insulin+ β cells because of increased β-cell apoptosis, indicating MafB can take part in the maintenance of adult β cells under certain pathological conditions.


Sign in / Sign up

Export Citation Format

Share Document